In
arithmetic geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.
...
, the Selmer group, named in honor of the work of by , is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
constructed from an
isogeny of
abelian varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular f ...
.
Selmer group of an isogeny
The Selmer group of an abelian variety ''A'' with respect to an
isogeny ''f'' : ''A'' → ''B'' of abelian varieties can be defined in terms of
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated with a field extension ''L''/''K'' acts in a na ...
as
:
where ''A''
v 'f''denotes the ''f''-
torsion of ''A''
v and
is the local
Kummer map . Note that
is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to