Schläfli Double Six
   HOME

TheInfoList



OR:

In geometry, the Schläfli double six is a
configuration Configuration or configurations may refer to: Computing * Computer configuration or system configuration * Configuration file, a software file used to configure the initial settings for a computer program * Configurator, also known as choice board ...
of 30 points and 12 lines in three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, introduced by
Ludwig Schläfli Ludwig Schläfli (; 15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional spac ...
in 1858. The lines of the configuration can be partitioned into two subsets of six lines: each line is disjoint from ( skew with) the lines in its own subset of six lines, and intersects all but one of the lines in the other subset of six lines. Each of the 12 lines of the configuration contains five intersection points, and each of these 30 intersection points belongs to exactly two lines, one from each subset, so in the notation of configurations the Schläfli double six is written 302125.


Construction

As Schläfli showed, the double six may be constructed from any five lines ''a''1, ''a''2, ''a''3, ''a''4, ''a''5, that are all intersected by a common line ''b''6, but are otherwise in
general position In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that a ...
(in particular, each two lines ''a''''i'' and ''a''''j'' should be skew, and no four of the lines ''a''''i'' should lie on a common
ruled surface In geometry, a Differential geometry of surfaces, surface in 3-dimensional Euclidean space is ruled (also called a scroll) if through every Point (geometry), point of , there is a straight line that lies on . Examples include the plane (mathemat ...
). For each of the five lines ''a''''i'', the complementary set of four out of the five lines has two
quadrisecant In geometry, a quadrisecant or quadrisecant line of a space curve is a line that passes through four points of the curve. This is the largest possible number of intersections that a generic space curve can have with a line, and for such curves ...
s: ''b''6 and a second line ''b''''i''. The five lines ''b''1, ''b''2, ''b''3, ''b''4, and ''b''5 formed in this way are all in turn intersected by another line, ''a''6. The twelve lines ''ai'' and ''bi'' form a double six: each line ''a''''i'' has an intersection point with five of the other lines, the lines ''b''''j'' for which ''i'' ≠ ''j'', and vice versa. An alternative construction, shown in the illustration, is to place twelve lines through the six face centers of a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
, each in the plane of its face and all making the same angles with respect to the cube's edges. Once constructed in either of these ways, the double six can be projected into the plane, forming a two-dimensional system of points and lines with the same incidence pattern.


Related objects

A generic
cubic surface In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than ...
contains 27 lines, among which can be found 36 Schläfli double six configurations. It may be necessary to use
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
coordinates to represent all of these lines; cubic surfaces can have fewer than 27 lines over the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. In any such set of 27 lines, the 15 lines complementary to a double six, together with the 15 tangent planes through triples of these lines, has the incidence pattern of another configuration, the Cremona–Richmond configuration. The
intersection graph In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph, but some important special classes of graphs can be defined by the types o ...
of the twelve lines of the double six configuration is a twelve-vertex crown graph, a
bipartite graph In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theo ...
in which each vertex is adjacent to five out of the six vertices of the opposite color. The
Levi graph In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we ...
of the double six may be obtained by replacing each edge of the crown graph by a two-edge path. The intersection graph of the entire set of 27 lines on a cubic surface is the complement of the
Schläfli graph In the mathematical field of graph theory, the Schläfli graph, named after Ludwig Schläfli, is a 16- regular undirected graph with 27 vertices and 216 edges. It is a strongly regular graph with parameters srg(27, 16, 10, 8). ...
.


Notes


References

* * * * *


External links

* {{DEFAULTSORT:Schlafli double six Configurations (geometry)