In biology, scaffold proteins are crucial regulators of many key
signalling pathway
In biology, cell signaling (cell signalling in British English) is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in both prokaryotes and eukaryo ...
s. Although scaffolds are not strictly defined in function, they are known to interact and/or bind with multiple members of a signalling pathway, tethering them into
complexes. In such pathways, they regulate signal transduction and help localize pathway components (organized in complexes) to specific areas of the cell such as the
plasma membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
, the
cytoplasm
The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
, the
nucleus
Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to:
*Atomic nucleus, the very dense central region of an atom
*Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA
Nucleu ...
, the
Golgi,
endosomes
Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
, and the
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
.
History
The first signaling scaffold protein discovered was the
Ste5 protein from the yeast ''
Saccharomyces cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
''. Three distinct domains of Ste5 were shown to associate with the
protein kinases
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
Ste11,
Ste7, and
Fus3 to form a multikinase complex.
Function
Scaffold proteins act in at least four ways: tethering signaling components, localizing these components to specific areas of the cell, regulating signal transduction by coordinating
positive and
negative feedback
Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
signals, and insulating correct signaling proteins from competing proteins.
Tethering signaling components
This particular function is considered a scaffold's most basic function. Scaffolds assemble signaling components of a
cascade
Cascade, or Cascading may refer to:
Science and technology Science
* Air shower (physics), a cascade (particle shower) of subatomic particles and ionized nuclei
** Particle shower, a cascade of secondary particles produced as the result of a high ...
into complexes. This assembly may be able to enhance signaling specificity by preventing unnecessary interactions between signaling proteins, and enhance signaling efficiency by increasing the proximity and effective concentration of components in the scaffold complex. A common example of how scaffolds enhance specificity is a scaffold that binds a protein kinase and its substrate, thereby ensuring specific kinase phosphorylation. Additionally, some signaling proteins require multiple interactions for activation and scaffold tethering may be able to convert these interactions into one interaction that results in multiple modifications.
Scaffolds may also be catalytic as interaction with signaling proteins may result in
allosteric
In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the p ...
changes of these signaling components. Such changes may be able to enhance or inhibit the activation of these signaling proteins. An example is the Ste5 scaffold in the mitogen-activated protein kinase (
MAPK
A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of serine/threonine-specific protein kinases involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflamm ...
) pathway. Ste5 has been proposed to direct mating signaling through the Fus3 MAPK by catalytically unlocking this particular kinase for activation by its MAPKK Ste7.
Localization of signaling components in the cell
Scaffolds localize the signaling reaction to a specific area in the cell, a process that could be important for the local production of signaling intermediates. A particular example of this process is the scaffold, A-kinase anchor proteins (AKAPs), which target cyclic AMP-dependent protein kinase (
PKA
In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction
:H ...
) to various sites in the cell. This localization is able to locally regulate PKA and results in the local phosphorylation by PKA of its substrates.
Coordinating positive and negative feedback
Many hypotheses about how scaffolds coordinate positive and negative feedback come from engineered scaffolds and mathematical modeling. In three-kinase signaling cascades, scaffolds bind all three kinases, enhancing kinase specificity and restricting signal amplification by limiting kinase phosphorylation to only one downstream target.
These abilities may be related to stability of the interaction between the scaffold and the kinases, the basal
phosphatase
In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid Ester, monoester into a phosphate ion and an Alcohol (chemistry), alcohol. Because a phosphatase enzyme catalysis, catalyzes the hydrolysis of its Substrate ...
activity in the cell, scaffold location, and expression levels of the signaling components.
Insulating correct signaling proteins from inactivation
Signaling pathways are often inactivated by enzymes that reverse the activation state and/or induce the degradation of signaling components. Scaffolds have been proposed to protect activated signaling molecules from inactivation and/or degradation. Mathematical modeling has shown that kinases in a cascade without scaffolds have a higher probability of being dephosphorylated by phosphatases before they are even able to phosphorylate downstream targets.
Furthermore, scaffolds have been shown to insulate kinases from substrate- and ATP-competitive inhibitors.
Scaffold protein summary
Huntingtin protein
Huntingtin
Huntingtin (Htt) is the protein coded for in humans by the ''HTT'' gene, also known as the ''IT15'' ("interesting transcript 15") gene. Mutation, Mutated ''HTT'' is the cause of Huntington's disease (HD), and has been investigated for this role an ...
protein co-localizes with
ATM repair protein at sites of
DNA damage
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...
.
Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex.
Huntington's disease
Huntington's disease (HD), also known as Huntington's chorea, is an incurable neurodegenerative disease that is mostly Genetic disorder#Autosomal dominant, inherited. It typically presents as a triad of progressive psychiatric, cognitive, and ...
patients with aberrant huntingtin protein are deficient in repair of
oxidative DNA damage. Oxidative DNA damage appears to underlie Huntington's disease
pathogenesis
In pathology, pathogenesis is the process by which a disease or disorder develops. It can include factors which contribute not only to the onset of the disease or disorder, but also to its progression and maintenance. The word comes .
Descript ...
.
Huntington's disease is likely caused by the dysfunction of mutant huntingtin scaffold protein in
DNA repair
DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
leading to increased oxidative DNA damage in metabolically active cells.
DNA repair
SPIDR (scaffold protein involved in
DNA repair
DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
) regulates the stability or assembly of RAD51 and DMC1 on single-stranded DNA.
RAD51
DNA repair protein RAD51 homolog 1 is a protein encoded by the gene ''RAD51''. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to t ...
and
DMC1 are
recombinase
Recombinases are genetic recombination enzymes.
Site specific recombinases
DNA recombinases are widely used in multicellular organisms to manipulate the structure of genomes, and to control gene expression. These enzymes, derived from bacteria ( ...
s that act during mammalian
meiosis
Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one c ...
to mediate strand exchange during the repair of DNA double-strand breaks by
homologous recombination
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
.
[
]
Other usage of the term Scaffold Protein
On some other instances in biology (not necessarily about cell signaling), the term "Scaffold protein" is used in a broader sense, where a protein holds several things together for any purpose.
;In chromosome folding: Chromosome scaffold has important role to hold the chromatin into compact chromosome
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
. Chromosome scaffold is made of proteins including condensin
Condensins are large protein complexes that play a central role in chromosome condensation and segregation during mitosis and meiosis (Figure 1). Their subunits were originally identified as major components of mitotic chromosomes assembled in ' ...
, topoisomerase IIα and kinesin family member 4 (KIF4) Chromosome scaffold constituent proteins are also called scaffold protein.
;In enzymatic reaction: Large multifunctional enzymes that performs a series or chain of reaction in a common pathway, sometimes called scaffold proteins. such as Pyruvate dehydrogenase
Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate.
Pyruvate dehydrogenase is ...
.
;In molecule shape formation: An enzyme or structural protein that holds several molecules together to hold them in proper spatial arrangement, such as Iron sulphur cluster scaffold proteins.
;Structural scaffold: In cytoskeleton
The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
and ECM, the molecules provide mechanical scaffold. Such as type 4 collagen[Molecular Cell Biology by Lodish et al. edition 5]
References
{{Signal transduction
Cell biology
Signal transduction
Cell signaling