HOME

TheInfoList



OR:

SAMV (iterative sparse asymptotic minimum variance) is a parameter-free
superresolution Super-resolution imaging (SR) is a class of techniques that improve the image resolution, resolution of an digital imaging, imaging system. In optical SR the diffraction-limited, diffraction limit of systems is transcended, while in geometrical SR ...
algorithm for the linear
inverse problem An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, sound source reconstruction, source reconstruction in ac ...
in spectral estimation, direction-of-arrival (DOA) estimation and
tomographic reconstruction Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projection (linear algebra), projections. The mathematical basis for tomographic imag ...
with applications in
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
,
medical imaging Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to revea ...
and
remote sensing Remote sensing is the acquisition of information about an physical object, object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring inform ...
. The name was coined in 2013 to emphasize its basis on the asymptotically minimum variance (AMV) criterion. It is a powerful tool for the recovery of both the amplitude and frequency characteristics of multiple highly
correlated In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistic ...
sources in challenging environments (e.g., limited number of snapshots and low
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in deci ...
). Applications include synthetic-aperture radar, computed tomography scan, and magnetic resonance imaging (MRI).


Definition

The formulation of the SAMV algorithm is given as an
inverse problem An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, sound source reconstruction, source reconstruction in ac ...
in the context of DOA estimation. Suppose an M-element uniform linear array (ULA) receive K narrow band signals emitted from sources located at locations \mathbf = \, respectively. The sensors in the ULA accumulates N snapshots over a specific time. The M \times 1 dimensional snapshot vectors are : \mathbf(n) = \mathbf \mathbf(n) + \mathbf(n), n = 1, \ldots, N where \mathbf = \mathbf(\theta_1), \ldots, \mathbf(\theta_K) /math> is the steering matrix, (n)= 1(n), \ldots, _K(n)T contains the source waveforms, and (n) is the noise term. Assume that \mathbf\left((n)^H(\bar)\right)= \sigma_M\delta_, where \delta_ is the
Dirac delta In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
and it equals to 1 only if n=\bar and 0 otherwise. Also assume that (n) and (n) are independent, and that \mathbf\left((n)^H(\bar)\right)=\delta_, where = \operatorname( ). Let be a vector containing the unknown signal powers and noise variance, = _1,\ldots,p_K, \sigmaT. The
covariance matrix In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of ...
of (n) that contains all information about \boldsymbol is : = ^H+\sigma. This covariance matrix can be traditionally estimated by the sample covariance matrix _ = ^H/N where = 1), \ldots,(N)/math>. After applying the vectorization operator to the matrix , the obtained vector (\boldsymbol) = \operatorname() is linearly related to the unknown parameter \boldsymbol as (\boldsymbol) = \operatorname()=\boldsymbol, where = 1,\bar_/math>, _1 = bar_1,\ldots,\bar_K/math>, \bar_k = ^_k \otimes_k, k=1,\ldots, K, and let \bar_ = \operatorname() where \otimes is the Kronecker product.


SAMV algorithm

To estimate the parameter \boldsymbol from the statistic _N, we develop a series of iterative SAMV approaches based on the asymptotically minimum variance criterion. From the covariance matrix \operatorname^\operatorname_ of an arbitrary consistent estimator of \boldsymbol based on the second-order statistic _N is bounded by the real symmetric positive definite matrix : \operatorname^\operatorname_\geq H_d ^_r_d, where _d = (\boldsymbol)/ \boldsymbol. In addition, this lower bound is attained by the covariance matrix of the asymptotic distribution of \hat obtained by minimizing : \hat =\arg \min_ f(\boldsymbol), where f(\boldsymbol) = N-(\boldsymbol)H _r^ N-(\boldsymbol) Therefore, the estimate of \boldsymbol can be obtained iteratively. The \_^K and \hat that minimize f(\boldsymbol) can be computed as follows. Assume \hat^_k and \hat^ have been approximated to a certain degree in the ith iteration, they can be refined at the (i+1)th iteration by : \hat^_k = \frac+\hat^_k-\frac, \quad k=1, \ldots,K : \hat^ = \left(\operatorname(^_N) + \hat^\operatorname(^) -\operatorname(^)\right)/, where the estimate of at the ith iteration is given by ^=^^H+\hat^ with ^=\operatorname(\hat^_1, \ldots, \hat^_K).


Beyond scanning grid accuracy

The resolution of most
compressed sensing Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for efficiently acquiring and reconstructing a Signal (electronics), signal by finding solutions to Underdetermined s ...
based source localization techniques is limited by the fineness of the direction grid that covers the location parameter space. In the sparse signal recovery model, the sparsity of the truth signal \mathbf(n) is dependent on the distance between the adjacent element in the overcomplete dictionary , therefore, the difficulty of choosing the optimum overcomplete dictionary arises. The computational complexity is directly proportional to the fineness of the direction grid, a highly dense grid is not computational practical. To overcome this resolution limitation imposed by the grid, the grid-free SAMV-SML (iterative Sparse Asymptotic Minimum Variance - Stochastic Maximum Likelihood) is proposed, which refine the location estimates \boldsymbol=(\theta_1,\ldots,\theta_K)^T by iteratively minimizing a stochastic
maximum likelihood In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stati ...
cost function with respect to a single scalar parameter \theta_k.


Application to range-Doppler imaging

A typical application with the SAMV algorithm in SISO
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
/
sonar Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances ( ranging), communicate with or detect objects o ...
range-Doppler imaging problem. This imaging problem is a single-snapshot application, and algorithms compatible with single-snapshot estimation are included, i.e.,
matched filter In signal processing, the output of the matched filter is given by correlating a known delayed signal, or ''template'', with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unkn ...
(MF, similar to the
periodogram In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods (see spectral estimation). It is the most ...
or backprojection, which is often efficiently implemented as
fast Fourier transform A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in ...
(FFT)), IAA, and a variant of the SAMV algorithm (SAMV-0). The simulation conditions are identical to: A 30-element polyphase
pulse compression Pulse compression is a signal processing technique commonly used by radar, sonar and Ultrasound, echography to either increase the range angular resolution, resolution when pulse length is constrained or increase the Signal-to-noise ratio, signal ...
P3 code is employed as the transmitted pulse, and a total of nine moving targets are simulated. Of all the moving targets, three are of 5 dB power and the rest six are of 25 dB power. The received signals are assumed to be contaminated with uniform white Gaussian noise of 0 dB power. The
matched filter In signal processing, the output of the matched filter is given by correlating a known delayed signal, or ''template'', with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unkn ...
detection result suffers from severe smearing and leakage effects both in the Doppler and range domain, hence it is impossible to distinguish the 5 dB targets. On contrary, the IAA algorithm offers enhanced imaging results with observable target range estimates and Doppler frequencies. The SAMV-0 approach provides highly sparse result and eliminates the smearing effects completely, but it misses the weak 5 dB targets.


Open source implementation

An open source
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementat ...
implementation of SAMV algorithm could be downloade
here


See also

* * * * (Radon transform) * (MUSIC), a popular parametric
superresolution Super-resolution imaging (SR) is a class of techniques that improve the image resolution, resolution of an digital imaging, imaging system. In optical SR the diffraction-limited, diffraction limit of systems is transcended, while in geometrical SR ...
method * * * * *


References

{{reflist, refs= {{cite journal , last1=Abeida , first1=Habti , last2=Zhang , first2=Qilin , last3=Li , first3=Jian, author3-link=Jian Li (engineer) , last4=Merabtine , first4=Nadjim , title=Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing , journal=IEEE Transactions on Signal Processing , volume=61 , issue=4 , year=2013 , issn=1053-587X , doi=10.1109/tsp.2012.2231676 , pages=933–944 , url=https://qilin-zhang.github.io/_pages/pdfs/SAMVpaper.pdf , bibcode=2013ITSP...61..933A , arxiv=1802.03070 , s2cid=16276001 {{cite journal , last1=Glentis , first1=George-Othon , last2=Zhao , first2=Kexin , last3=Jakobsson , first3=Andreas , last4=Abeida , first4=Habti , last5=Li , first5=Jian , author5-link=Jian Li (engineer), title=SAR imaging via efficient implementations of sparse ML approaches , journal=Signal Processing , volume=95 , year=2014 , doi=10.1016/j.sigpro.2013.08.003 , pages=15–26, bibcode=2014SigPr..95...15G , s2cid=41743051 , url=http://portal.research.lu.se/ws/files/1868394/4076845.pdf {{cite journal , last1=Yang , first1=Xuemin , last2=Li , first2=Guangjun , last3=Zheng , first3=Zhi , title=DOA Estimation of Noncircular Signal Based on Sparse Representation , journal=Wireless Personal Communications , volume=82 , issue=4 , date=2015-02-03 , doi=10.1007/s11277-015-2352-z , pages=2363–2375, s2cid=33008200 {{cite journal , last1=Malioutov , first1=D. , last2=Cetin , first2=M. , last3=Willsky , first3=A.S. , title=A sparse signal reconstruction perspective for source localization with sensor arrays , journal=IEEE Transactions on Signal Processing , volume=53 , issue=8 , year=2005 , doi=10.1109/tsp.2005.850882 , pages=3010–3022, bibcode=2005ITSP...53.3010M , hdl=1721.1/87445 , s2cid=6876056 , hdl-access=free {{cite journal , last1=Yardibi , first1=Tarik , last2=Li , first2=Jian, author2-link=Jian Li (engineer) , last3=Stoica , first3=Petre , last4=Xue , first4=Ming , last5=Baggeroer , first5=Arthur B. , title=Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , journal=IEEE Transactions on Aerospace and Electronic Systems , volume=46 , issue=1 , year=2010 , doi=10.1109/taes.2010.5417172 , pages=425–443, bibcode=2010ITAES..46..425Y , hdl=1721.1/59588 , s2cid=18834345 , hdl-access=free Signal estimation Fourier analysis Frequency-domain analysis Trigonometry Wave mechanics Medical imaging Inverse problems Multidimensional signal processing Signal processing Tomography