Reynolds Decomposition
   HOME

TheInfoList



OR:

In
fluid dynamics In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
and
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
theory, Reynolds decomposition is a mathematical technique used to separate the
expectation value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected va ...
of a quantity from its fluctuations.


Decomposition

For example, for a quantity u the decomposition would be u(x,y,z,t) = \overline + u'(x,y,z,t) where \overline denotes the expectation value of u, (often called the steady component/time, spatial or ensemble average), and u', are the deviations from the expectation value (or fluctuations). The fluctuations are defined as the expectation value subtracted from quantity u such that their time average equals zero. The expected value, \overline, is often found from an ensemble average which is an average taken over multiple experiments under identical conditions. The expected value is also sometime denoted \langle u\rangle, but it is also seen often with the over-bar notation.
Direct numerical simulation A direct numerical simulation (DNS)https://eprints.soton.ac.uk/66182/1/A_primer_on_DNS.pdf "A Primer on Direct Numerical Simulation of Turbulence – Methods, Procedures and Guidelines", Coleman and Sandberg, 2010 is a simulation in computational ...
, or resolution of the
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
completely in (x,y,z,t), is only possible on extremely fine computational grids and small time steps even when
Reynolds number In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
s are low, and becomes prohibitively computationally expensive at high Reynolds' numbers. Due to computational constraints, simplifications of the Navier-Stokes equations are useful to parameterize turbulence that are smaller than the computational grid, allowing larger computational domains. Reynolds decomposition allows the simplification of the Navier–Stokes equations by substituting in the sum of the steady component and perturbations to the velocity profile and taking the
mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
value. The resulting equation contains a nonlinear term known as the Reynolds stresses which gives rise to turbulence.


See also

*
Reynolds-averaged Navier–Stokes equations The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged ...


References

{{DEFAULTSORT:Reynolds Decomposition Turbulence