HOME

TheInfoList



OR:

The Rutherford model is a name for the first model of an atom with a compact nucleus. The concept arose from
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
discovery of the nucleus. Rutherford directed the Geiger–Marsden experiment in 1909, which showed much more alpha particle recoil than J. J. Thomson's
plum pudding model The plum pudding model is an obsolete scientific model of the atom. It was first proposed by J. J. Thomson in 1904 following his discovery of the electron in 1897, and was rendered obsolete by Ernest Rutherford's discovery of the atomic nucleus i ...
of the atom could explain. Thomson's model had positive charge spread out in the atom. Rutherford's analysis proposed a high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume containing most of the atom's mass. The central region would later be known as the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
. Rutherford did not discuss the organization of electrons in the atom and did not himself propose a model for the atom.
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
joined Rutherford's lab and developed a theory for the electron motion which became known as the
Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
.


Background

Throughout the 1800s, speculative ideas about atoms were discussed and published. JJ Thomson's model was the first of these models to be based on experimentally detected subatomic particles. In the same paper that Thomson announced his results on "corpuscle" nature of
cathode rays Cathode rays are streams of electrons observed in vacuum tube, discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitte ...
, an event considered the discovery of the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
, he began speculating on atomic models composed of electrons. He developed his model, now called the
plum pudding model The plum pudding model is an obsolete scientific model of the atom. It was first proposed by J. J. Thomson in 1904 following his discovery of the electron in 1897, and was rendered obsolete by Ernest Rutherford's discovery of the atomic nucleus i ...
, primarily in 1904-06. He produced an elaborate mechanical model of the electrons moving in concentric rings, but the positive charge needed to balance the negative electrons was a simple sphere of uniform charge and unknown composition. Between 1904 and 1910 Thomson developed formulae for the deflection of fast beta particles from his atomic model for comparison to experiment. Similar work by Rutherford using alpha particles would eventually show Thomson's model could not be correct. Also among the early models were "planetary" or Solar System-like models. In a 1901 paper,
Jean Baptiste Perrin Jean Baptiste Perrin (; 30 September 1870 – 17 April 1942) was a French atomic physicist who, in his studies of the Brownian motion of minute particles suspended in liquids (sedimentation equilibrium), verified Albert Einstein's explanation o ...
used Thomson's discovery in a proposed a
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
like model for atoms, with very strongly charged "positive suns" surrounded by "corpuscles, a kind of small negative planets", where the word "corpuscles" refers to what we now call electrons. Perrin discussed how this hypothesis might related to important then unexplained phenomena like the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
, emission spectra, and
radioactivity Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Perrin later credited Rutherford with the discovery of the nuclear model. A somewhat similar model proposed by Hantaro Nagaoka in 1904 used Saturn's rings as an analog. The rings consisted of a large number of particles that repelled each other but were attracted to a large central charge. This charge was calculated to be 10,000 times the charge of the ring particles for stability. George A. Schott showed in 1904 that Nagaoka's model could not be consistent with results of atomic spectroscopy and the model fell out of favor.


Experimental basis for the model

Rutherford's nuclear model of the atom grew out of a series of experiments with
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s, a form of radiation Rutherford discovered in 1899. These experiments demonstrated that alpha particles "scattered" or bounced off atoms in ways unlike Thomson's model predicted. In 1908 and 1910,
Hans Geiger Johannes Wilhelm Geiger ( , ; ; 30 September 1882 – 24 September 1945) was a German nuclear physicist. He is known as the inventor of the Geiger counter, a device used to detect ionizing radiation, and for carrying out the Rutherford scatt ...
and
Ernest Marsden Sir Ernest Marsden (19 February 1889 – 15 December 1970) was an English-New Zealand physicist. He is recognised internationally for his contributions to science while working under Ernest Rutherford, which led to the discovery of new theories ...
in Rutherford's lab showed that alpha particles could occasionally be reflected from gold foils. If Thomson was correct, the beam would go through the gold foil with very small deflections. In the experiment most of the beam passed through the foil, but a few were deflected. In a May 1911 paper, Rutherford presented his own physical model for subatomic structure, as an interpretation for the unexpected experimental results. In it, the atom is made up of a central charge (this is the modern
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
, though Rutherford did not use the term "nucleus" in his paper). Rutherford only committed himself to a small central region of very high positive or negative charge in the atom.
For concreteness, consider the passage of a high speed α particle through an atom having a positive central charge ''N'' ''e'', and surrounded by a compensating charge of ''N'' electrons.
Using only energetic considerations of how far particles of known speed would be able to penetrate toward a central charge of 100 e, Rutherford was able to calculate that the radius of his
gold Gold is a chemical element; it has chemical symbol Au (from Latin ) and atomic number 79. In its pure form, it is a brightness, bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal ...
central charge would need to be less (how much less could not be told) than 3.4 × 10−14 meters. This was in a gold atom known to be 10−10 metres or so in radius—a very surprising finding, as it implied a strong central charge less than 1/3000th of the diameter of the atom. The Rutherford model served to concentrate a great deal of the atom's charge and mass to a very small core, but did not attribute any structure to the remaining electrons and remaining atomic mass. It did mention the atomic model of Hantaro Nagaoka, in which the electrons are arranged in one or more rings, with the specific metaphorical structure of the stable rings of Saturn. The
plum pudding model The plum pudding model is an obsolete scientific model of the atom. It was first proposed by J. J. Thomson in 1904 following his discovery of the electron in 1897, and was rendered obsolete by Ernest Rutherford's discovery of the atomic nucleus i ...
of J. J. Thomson also had rings of orbiting electrons. The Rutherford paper suggested that the central charge of an atom might be "proportional" to its atomic mass in hydrogen mass units u (roughly 1/2 of it, in Rutherford's model). For gold, this mass number is 197 (not then known to great accuracy) and was therefore modelled by Rutherford to be possibly 196 u. However, Rutherford did not attempt to make the direct connection of central charge to
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
, since gold's "atomic number" (at ''that'' time merely its place number in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
) was 79, and Rutherford had modelled the charge to be about +100 units (he had actually suggested 98 units of positive charge, to make half of 196). Thus, Rutherford did not formally suggest the two numbers (periodic table place, 79, and nuclear charge, 98 or 100) might be exactly the same. In 1913 Antonius van den Broek suggested that the nuclear charge and atomic weight were not connected, clearing the way for the idea that atomic number and nuclear charge were the same. This idea was quickly taken up by Rutherford's team and was confirmed experimentally within two years by Henry Moseley. These are the key indicators: * The atom's
electron cloud In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
does not (substantially) influence alpha particle scattering. * Much of an atom's positive charge is concentrated in a relatively tiny volume at the center of the atom, known today as the nucleus. The magnitude of this charge is proportional to (up to a charge number that can be approximately half of) the atom's
atomic mass Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
—the remaining mass is now known to be mostly attributed to neutrons. This concentrated central mass and charge is responsible for deflecting both alpha and
beta Beta (, ; uppercase , lowercase , or cursive ; or ) is the second letter of the Greek alphabet. In the system of Greek numerals, it has a value of 2. In Ancient Greek, beta represented the voiced bilabial plosive . In Modern Greek, it represe ...
particles. * The mass of heavy atoms such as gold is mostly concentrated in the central charge region, since calculations show it is not deflected or moved by the high speed alpha particles, which have very high
momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
in comparison to electrons, but not with regard to a heavy atom as a whole. * The atom itself is about 100,000 (105) times the diameter of the nucleus. This could be related to putting a grain of sand in the middle of a football field.


Contribution to modern science

Rutherford's new atom model caused no reaction at first. Rutherford explicitly ignores the electrons, only mentioning Hantaro Nagaoka's Saturnian model. By ignoring the electrons Rutherford also ignores any potential implications for atomic spectroscopy for chemistry. Rutherford himself did not press the case for his atomic model in the following years: his own 1913 book on "Radioactive substances and their radiations" only mentions the atom twice; other books by other authors around this time focus on Thomson's model. The impact of Rutherford's nuclear model came after
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
arrived as a post-doctoral student in Manchester at Rutherford's invitation. Bohr dropped his work on the Thomson model in favor of Rutherford's nuclear model, developing the Rutherford–Bohr model over the next several years. Eventually Bohr incorporated early ideas of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
into the model of the atom, allowing prediction of electronic spectra and concepts of chemistry. After Rutherford's discovery, subsequent research determined the atomic structure which led to Rutherford's gold foil experiment. Scientists eventually discovered that atoms have a positively charged nucleus (with an atomic number of charges) in the center, with a radius of about 1.2 × 10−15 meters × tomic mass numbersup>. Electrons were found to be even smaller.


References


External links


Rutherford's Model by Raymond College


{{Atomic models 1911 in science Articles containing video clips Ernest Rutherford Foundational quantum physics Obsolete theories in physics