HOME

TheInfoList



OR:

''Rope trick'' is the term given by physicist John Malik to the curious lines and spikes which emanate from the fireball of certain
nuclear explosions A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, th ...
just after detonation.


Description

The adjacent photograph shows two unusual phenomena: bright spikes projecting from the bottom of the fireball, and the peculiar
mottling Mottle is a pattern of irregular marks, spots, streaks, blotches or patches of different shades or colours. It is commonly used to describe the surface of plants or the skin of animals. In plants, mottling usually consists of yellowish spots ...
of the expanding fireball surface. The surface of the fireball, with a temperature over 20,000
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ph ...
s, emits huge amounts of visible light radiation, more than 100 times the intensity at the Sun's surface. Anything solid in the area absorbs the light and rapidly heats. The "rope tricks" that protrude from the bottom of the fireball are caused by the heating, rapid vaporization and then expansion of
guy wires A guy-wire, guy-line, guy-rope, or stay, also called simply a guy, is a tensioned cable designed to add stability to a free-standing structure. They are used commonly for ship masts, radio masts, wind turbines, utility poles, and tents. A thi ...
that extend from the shot cab, the housing at the top of the
tower A tower is a tall structure, taller than it is wide, often by a significant factor. Towers are distinguished from masts by their lack of guy-wires and are therefore, along with tall buildings, self-supporting structures. Towers are specifi ...
that contains the explosive device, to the ground. Malik observed that when the rope was
paint Paint is any pigmented liquid, liquefiable, or solid mastic composition that, after application to a substrate in a thin layer, converts to a solid film. It is most commonly used to protect, color, or provide texture. Paint can be made in many ...
ed black, spike formation was enhanced, and if it were painted with reflective paint or wrapped in
aluminium foil Aluminium foil (or aluminum foil in North American English; often informally called tin foil) is aluminium prepared in thin metal leaves with a thickness less than ; thinner gauges down to are also commonly used. Standard household foil is typ ...
, no spikes were observed – thus confirming the hypothesis that it is heating and vaporization of the rope, induced by exposure to high-intensity visible light radiation, which causes the effect. Because of the lack of guy wires, no "rope trick" effects were observed in surface-detonation tests, free-flying weapons tests, or underground tests. The cause of a surface mottling is more complex. In the initial microseconds after the explosion, a fireball is formed around the bomb by the massive numbers of thermal
x-ray X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ' ...
s released by the explosion process. These x-rays cannot travel very far in the lower atmosphere before reacting with molecules in the air, so the result is a fireball that rapidly forms within about in diameter and does not expand. This is known as a "radiatively driven" fireball. Inside the radiative fireball the bomb itself is rapidly expanding due to the heat generated by the nuclear reactions. This moves outward at
supersonic Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
speeds, creating a
hydrodynamic In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and ...
shock wave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
at its outer edge. After a brief period this shock front reaches and then passes the initial radiative fireball. The shock wave contains so much energy that the compression heating it causes in the air causes it to glow. At the point in the explosion captured in the photo above, the shock front has passed the original radiative fireball and has about twice its size. In the first few
microseconds A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 100 ...
after detonation, the bomb casing and shot cab are destroyed and vaporized. These vapors are accelerated to very high velocities, several tens of kilometers per second, faster than the shock front. However, this acceleration happens in a short period, so the material is trapped behind the shock front, even though it eventually travels faster than the shock front. The various light and dark patches are caused by the varying vapor density of the material splashing against the back of the shock front. The irregular variations in mass distribution around the bomb core create the mottled blob-like appearance.


Sounding rockets

After a few milliseconds, the energy of the shock front will no longer be great enough to heat the air into
incandescence Incandescence is the emission of electromagnetic radiation (including visible light) from a hot body as a result of its high temperature. The term derives from the Latin verb ''incandescere,'' to glow white. A common use of incandescence is ...
. At that point, the shock front becomes invisible, a process known as "breakaway". This makes the shock wave difficult to diagnose beyond this boundary. Photographs of nuclear tests often show numerous vertical rope-like lines to one side. These are typically created by small
sounding rocket A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to ...
s launched a few seconds before the firing, leaving smoke trails. The purpose of these trails is to record the passing of the now invisible shock wave, which causes an obvious visual effect on the smoke by compressing the air into a
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'' ...
. This is not necessarily related to the rope trick effect in any physical way, but it is possible to confuse the two in some photographs. In the photograph of the Tumbler-Snapper test (at the top of this article), the vertical lines in the lower-right corner are blast line poles not smoke trails.


Camera recording

The photo was shot by a rapatronic camera (a
high-speed camera A high-speed camera is a device capable of capturing moving images with exposures of less than 1/1,000 second or frame rates in excess of 250 fps. It is used for recording fast-moving objects as photographic images onto a storage medium. After r ...
invented by
Harold Edgerton Harold Eugene "Doc" Edgerton (April 6, 1903 – January 4, 1990), also known as Papa Flash, was an American scientist and researcher, a professor of electrical engineering at the Massachusetts Institute of Technology. He is largely credited with ...
and colleagues) built by
EG&G EG&G, formally known as Edgerton, Germeshausen, and Grier, Inc., was a United States national defense contractor and provider of management and technical services. The company was involved in contracting services to the United States governmen ...
. Each camera was capable of recording only one
exposure Exposure or Exposures may refer to: People * The Exposures, a pseudonym for German electronic musician Jan Jeline Arts, entertainment, and media Films * ''Exposure'' (film), a 1932 American film * ''Exposure'', another name for the 1991 movie ...
on a single sheet of film. To create
time-lapse Time-lapse photography is a technique in which the frequency at which film frames are captured (the frame rate) is much lower than the frequency used to view the sequence. When played at normal speed, time appears to be moving faster and thu ...
sequences, banks of four to ten cameras were set up to take photos in rapid succession. The average exposure time was three
microseconds A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 100 ...
.


Image gallery

File:RTE01.jpg, File:RTE02.jpg, File:RTE10.jpg, File:RTE05.jpg, File:RTE07.jpg,


References


Sources

*This article incorporates text from the
National Nuclear Security Administration The National Nuclear Security Administration (NNSA) is a United States federal agency responsible for safeguarding national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and ef ...
'
"Rapatronic Photography" factsheet
(August 2013).


External links

*{{Commonscatinline
Rare Nuclear Bomb Footage Reveals Their True Power , WIRED
Nuclear weapons testing Articles containing video clips