HOME

TheInfoList



OR:

In mathematics, the Riesz–Markov–Kakutani representation theorem relates
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of ...
s on spaces of continuous functions on a
locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
to measures in measure theory. The theorem is named for who introduced it for
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s on the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
, who extended the result to some non-compact spaces, and who extended the result to
compact Hausdorff space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
s. There are many closely related variations of the theorem, as the linear functionals can be complex, real, or positive, the space they are defined on may be the unit interval or a compact space or a
locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ...
, the continuous functions may be vanishing at infinity or have
compact support In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed ...
, and the measures can be
Baire measure In mathematics, a Baire measure is a measure on the σ-algebra of Baire sets of a topological space whose value on every compact Baire set is finite. In compact metric spaces the Borel sets and the Baire sets are the same, so Baire measures are th ...
s or regular Borel measures or
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
s or
signed measure In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign. Definition There are two slightly different concepts of a signed measure, de ...
s or
complex measure In mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size (length, area, volume) is a complex number. Definition Formal ...
s.


The representation theorem for positive linear functionals on ''Cc''(''X'')

The statement of the theorem for positive
linear functionals In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field (mat ...
on , the space of compactly supported complex-valued
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s, is as follows: Theorem Let be a
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
and \psi a
positive linear functional In mathematics, more specifically in functional analysis, a positive linear functional on an ordered vector space (V, \leq) is a linear functional f on V so that for all positive elements v \in V, that is v \geq 0, it holds that f(v) \geq 0. In oth ...
on . Then there exists a unique positive
Borel measure In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. ...
\mu on such that :\psi(f) = \int_X f(x) \, d\mu(x), \quad \forall f \in C_c(X), which has the following additional properties for some \Sigma containing the
Borel σ-algebra In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union (set theory), union, countable intersection (set theory), intersec ...
on : * \mu(K)<\infty for every compact K\subset X, * Outer regularity: \mu(E) = \inf \ holds for every
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
E\in\Sigma; * Inner regularity: \mu(E) = \sup \ holds whenever E is open or when E is Borel and \mu(E)<\infty; * (X,\Sigma,\mu) is a
complete measure space In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (''X'', Î£, ''μ'') is compl ...
As such, if all open sets in are σ-compact then \mu is a Radon measure. One approach to
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingl ...
is to start with a
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
, defined as a positive linear functional on . This is the way adopted by
Bourbaki Bourbaki(s) may refer to : Persons and science * Charles-Denis Bourbaki (1816–1897), French general, son of Constantin Denis Bourbaki * Colonel Constantin Denis Bourbaki (1787–1827), officer in the Greek War of Independence and serving in the ...
; it does of course assume that starts life as a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, rather than simply as a set. For locally compact spaces an integration theory is then recovered. Without the condition of regularity the Borel measure need not be unique. For example, let be the set of ordinals at most equal to the
first uncountable ordinal In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. Whe ...
, with the topology generated by "
open interval In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without ...
s". The linear functional taking a continuous function to its value at corresponds to the regular Borel measure with a point mass at . However it also corresponds to the (non-regular) Borel measure that assigns measure to any Borel set B\subseteq ,\Omega/math> if there is closed and unbounded set C\subseteq
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
\ gets measure , contrary to the point mass measure.)


The representation theorem for the continuous dual of ''C''0(''X'')

The following representation, also referred to as the ''Riesz–Markov theorem'', gives a concrete realisation of the Dual space#Continuous dual space">topological dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by const ...
of , the set of
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s on which vanish at infinity. Theorem Let be a locally compact Hausdorff space. For any continuous
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of ...
\psi on , there is a unique complex-valued
regular Borel measure In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topolo ...
\mu on such that :\psi(f) = \int_X f(x) \, d \mu(x), \quad \forall f \in C_0(X). A complex-valued Borel measure \mu is called regular if the positive measure , \mu , satisfies the regularity conditions defined above. The norm of \psi as a linear functional is the
total variation In mathematics, the total variation identifies several slightly different concepts, related to the (local property, local or global) structure of the codomain of a Function (mathematics), function or a measure (mathematics), measure. For a real ...
of \mu, that is : \, \psi\, = , \mu, (X). Finally, \psi is positive if and only if the measure \mu is positive. One can deduce this statement about linear functionals from the statement about positive linear functionals by first showing that a bounded linear functional can be written as a finite linear combination of positive ones.


Historical remark

In its original form by the theorem states that every continuous linear functional over the space of continuous functions in the interval can be represented as :A (x)= \int_0^1 f(x)\,d\alpha(x), where is a function of
bounded variation In mathematical analysis, a function of bounded variation, also known as ' function, is a real number, real-valued function (mathematics), function whose total variation is bounded (finite): the graph of a function having this property is well beh ...
on the interval , and the integral is a
Riemann–Stieltjes integral In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an inst ...
. Since there is a one-to-one correspondence between Borel regular measures in the interval and functions of bounded variation (that assigns to each function of bounded variation the corresponding Lebesgue–Stieltjes measure, and the integral with respect to the Lebesgue–Stieltjes measure agrees with the Riemann–Stieltjes integral for continuous functions), the above stated theorem generalizes the original statement of F. Riesz.


Notes


References

* * * ; a category theoretic presentation as natural transformation. * * * * * * * {{DEFAULTSORT:Riesz-Markov-Kakutani representation theorem Theorems in functional analysis Duality theories Integral representations Linear functionals