In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Riesz–Fischer theorem in
real analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
is any of a number of closely related results concerning the properties of the space
''L''2 of
square integrable
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
functions. The theorem was proven independently in 1907 by
Frigyes Riesz
Frigyes Riesz (, , sometimes known in English and French as Frederic Riesz; 22 January 1880 – 28 February 1956) was a HungarianEberhard Zeidler: Nonlinear Functional Analysis and Its Applications: Linear monotone operators. Springer, 199/ref> ...
and
Ernst Sigismund Fischer.
For many authors, the Riesz–Fischer theorem refers to the fact that the
Lp space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourba ...
s
from
Lebesgue integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri L ...
theory are
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies t ...
.
Modern forms of the theorem
The most common form of the theorem states that a measurable function on