HOME

TheInfoList



OR:

Retinotopy () is the mapping of visual input from the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
to
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s, particularly those neurons within the visual stream. For clarity, 'retinotopy' can be replaced with 'retinal mapping', and 'retinotopic' with 'retinally mapped'.
Visual field The visual field is "that portion of space in which objects are visible at the same moment during steady fixation of the gaze in one direction"; in ophthalmology and neurology the emphasis is mostly on the structure inside the visual field and it i ...
maps (retinotopic maps) are found in many
amphibian Amphibians are ectothermic, anamniote, anamniotic, tetrapod, four-limbed vertebrate animals that constitute the class (biology), class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all Tetrapod, tetrapods, but excl ...
and
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
ian species, though the specific size, number, and spatial arrangement of these maps can differ considerably. Sensory topographies can be found throughout the brain and are critical to the
understanding Understanding is a cognitive process related to an abstract or physical object, such as a person, situation, or message whereby one is able to use concepts to model that object. Understanding is a relation between the knower and an object of u ...
of one's external environment. Moreover, the study of sensory topographies and retinotopy in particular has furthered our understanding of how neurons encode and organize sensory signals. Retinal mapping of the visual field is maintained through various points of the visual pathway including but not limited to the retina, the dorsal
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, Anatomical ter ...
, the optic tectum, the
primary visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus ...
(V1), and higher visual areas (V2-V4). Retinotopic maps in cortical areas other than V1 are typically more complex, in the sense that adjacent points of the visual field are not always represented in adjacent regions of the same area. For example, in the second visual area ( V2), the map is divided along an imaginary horizontal line across the visual field, in such a way that the parts of the retina that respond to the upper half of the visual field are represented in cortical tissue that is separated from those parts that respond to the lower half of the visual field. Even more complex maps exist in the third and fourth visual areas V3 and V4, and in the dorsomedial area (V6). In general, these complex maps are referred to as second-order representations of the visual field, as opposed to first-order (continuous) representations such as V1. Additional retinotopic regions include ventral occipital (VO-1, VO-2), lateral occipital (LO-1, LO-2), dorsal occipital (V3A, V3B), and posterior parietal cortex (IPS0, IPS1, IPS2, IPS3, IPS4).


History

In the late 19th-century, independent animal studies including some on dogs by the physiologist
Hermann Munk Hermann Munk (3 February 1839 – 1 October 1912) was a German physiologist. He was born at Posen, studied at Berlin and Göttingen, and in 1862 became docent in the former university. Seven years afterward he was promoted to assistant profes ...
and some on monkeys by the neurologist
David Ferrier Sir David Ferrier FRS (13 January 1843 – 19 March 1928) was a pioneering Scottish neurologist and psychologist. Ferrier conducted experiments on the brains of animals such as monkeys and in 1881 became the first scientist to be prosecuted ...
elucidated that lesions to the occipital and parietal lobes induced blindness. Around the turn of the century, Swedish neurologist and pathologist Salomon Henschen had a prolific body of work on the mind that included much research on neuropathology. Although only partially accurate, he correlated the location of brain lesion to areas of occluded vision. He became an early proponent of the existence of a visual map which he called the "cortical retina". Early accurate mapping of the visual map arose from studying cranial injuries in war. Maps were described and analyzed by the Japanese ophthalmologist Tatsuji Inouye when studying soldiers' injuries incurred in the
Russo-Japanese War The Russo-Japanese War (8 February 1904 – 5 September 1905) was fought between the Russian Empire and the Empire of Japan over rival imperial ambitions in Manchuria and the Korean Empire. The major land battles of the war were fought on the ...
, although his work on the subject—published in 1909 through a German monograph—was largely ignored and abandoned to obscurity. Independently of Inouye a few years later, the British neurologist Gordon Holmes made similar advances studying the injuries suffered by soldiers in
World War I World War I or the First World War (28 July 1914 – 11 November 1918), also known as the Great War, was a World war, global conflict between two coalitions: the Allies of World War I, Allies (or Entente) and the Central Powers. Fighting to ...
. Both scientists observed correlations between the position of an entry wound and the presented visual field loss in the patient. (See Fishman, 1997 for an in-depth historical review.)


Development


Molecular cues

The " chemoaffinity hypothesis" was established by Sperry et al in 1963 in which it is thought that molecular gradients in both presynaptic and postsynaptic partners within the optic tectum organize developing axons into a coarse retinotopic map. This was established after a series of seminal experiments in fish and amphibians showed that retinal ganglion axons were already retinotopically organized within the optic tract and if severed, would regenerate and project back to retinotopically appropriate locations. Later, it was identified that
receptor tyrosine kinase Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome, 58 encode receptor tyrosine kinas ...
s family EphA and a related EphA binding molecule referred to as ephrin-A family are expressed in complementary gradients in both the retina and the tectum. More specifically in the mouse, Ephrin A5 is expressed along the rostral-caudal axis of the optic tectum whereas the EphB family is expressed along the medio-lateral axis. This bimodal expression suggests a mechanism for the graded mapping of the temporal-nasal axis and the dorsoventral axis of the retina.


Target space

While molecular cues are thought to guide axons into a coarse retinotopic map, the resolution of this map is thought to be influenced by available target space on postsynaptic partners. In wild type mice, it is thought that competition of target space is important for ensuring continuous retinal mapping, and that if perturbed, this competition may lead to the expansion or compression of the map depending on the available space. If the available space is altered, such as lesioning or ablating half of the retina, the healthy axons will expand their arbors in the tectum to fill the space. Similarly, if part of the tectum is ablated, the retinal axons will compress the topography to fit within the available tectal space.


Neural activity

While neural activity in the retina is not necessary for the development of retinotopy, it seems to be a critical component for the refinement and stabilization of connectivity. Dark reared animals (no external visual cues) develop a normal retinal map in the tectum with no marked changes in receptive field size or laminar organization. While these animals may not have received external visual cues during development, these experiments suggest that spontaneous activity in the retina may be sufficient for retinotopic organization. In the goldfish, no neural activity (no external visual cues, and no spontaneous activity) did not prevent the formation of the retinal map but the final organization showed signs of lower resolution refinement and more dynamic growth (less stable). Based on Hebbian mechanisms, the thought is that if neurons are sensitive to similar stimuli (similar area of the visual field, similar orientation or direction selectivity) they will likely fire together. This patterned firing will result in stronger connectivity within the retinotopic organization through NMDAR synapse stabilization mechanisms in the post synaptic cells.


Dynamic growth

Another important factor in the development of retinotopy is the potential for structural plasticity even after neurons are morphologically mature. One interesting hypothesis is that axons and dendrites are continuously extending and retracting their axons and dendrites. Several factors alter this dynamic growth including the chemoaffinity hypothesis, the presence of developed synapses, and neural activity. As the nervous system develops and more cells are added, this structural plasticity allows for axons to gradually refine their place within the retinotopy. This plasticity is not specific to retinal ganglion axons, rather it's been shown that dendritic arbors of tectal neurons and filopodial processes of
radial glial cell Radial glial cells, or radial glial progenitor cells (RGPs), are Bipolar neuron, bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including as ...
s are also highly dynamic.


Description

In many locations within the brain, adjacent
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s have receptive fields that include slightly different, but overlapping portions of the
visual field The visual field is "that portion of space in which objects are visible at the same moment during steady fixation of the gaze in one direction"; in ophthalmology and neurology the emphasis is mostly on the structure inside the visual field and it i ...
. The position of the center of these receptive fields forms an orderly sampling mosaic that covers a portion of the visual field. Because of this orderly arrangement, which emerges from the spatial specificity of connections between neurons in different parts of the visual system, cells in each structure can be seen as contributing to a map of the visual field (also called a retinotopic map, or a visuotopic map). Retinotopic maps are a particular case of topographic organization. Many brain structures that are responsive to visual input, including much of the
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalam ...
and visual nuclei of the
brain stem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is co ...
(such as the
superior colliculus In neuroanatomy, the superior colliculus () is a structure lying on the tectum, roof of the mammalian midbrain. In non-mammalian vertebrates, the Homology (biology), homologous structure is known as the optic tectum or optic lobe. The adjective f ...
) and
thalamus The thalamus (: thalami; from Greek language, Greek Wikt:θάλαμος, θάλαμος, "chamber") is a large mass of gray matter on the lateral wall of the third ventricle forming the wikt:dorsal, dorsal part of the diencephalon (a division of ...
(such as the
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, Anatomical ter ...
and the pulvinar), are organized into retinotopic maps, also called visual field maps. Areas of the
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalam ...
are sometimes defined by their retinotopic boundaries, using a criterion that states that each area should contain a complete map of the visual field. However, in practice the application of this criterion is in many cases difficult. Those visual areas of the brainstem and cortex that perform the first steps of processing the retinal image tend to be organized according to very precise retinotopic maps. The role of retinotopy in other areas, where neurons have large receptive fields, is still being investigated. Retinotopy mapping shapes the folding of the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of Neuron, neural integration in the central nervous system, and plays ...
. In both the V1 and V2 areas of
macaque The macaques () constitute a genus (''Macaca'') of gregarious Old World monkeys of the subfamily Cercopithecinae. The 23 species of macaques inhabit ranges throughout Asia, North Africa, and Europe (in Gibraltar). Macaques are principally f ...
s and
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
s the vertical meridian of their visual field tends to be represented on the cerebral cortex's convex
gyri In neuroanatomy, a gyrus (: gyri) is a ridge on the cerebral cortex. It is generally surrounded by one or more sulcus (neuroanatomy), sulci (depressions or furrows; : sulcus). Gyri and sulci create the folded appearance of the brain in huma ...
folds whereas the horizontal meridian tends to be represented in their concave
sulci Sulci or Sulki (in Greek , Stephanus of Byzantium, Steph. B., Ptolemy, Ptol.; , Strabo; , Pausanias (geographer), Paus.), was one of the most considerable cities of ancient Sardinia, situated in the southwest corner of the island, on a small isla ...
folds.


Methods

Retinotopy mapping in humans is done with
functional magnetic resonance imaging Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area o ...
(fMRI). The subject inside the fMRI machine focuses on a point. Then the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
is stimulated with a circular image or angled lines about the focus point.> The radial map displays the distance from the center of vision. The angular map shows angular location using rays angled about the center of vision. By combining the radial and angular maps, the separate regions of the
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalam ...
and the smaller maps in each region can be seen.


See also

*
Biological neural network A neural network, also called a neuronal network, is an interconnected population of neurons (typically containing multiple neural circuits). Biological neural networks are studied to understand the organization and functioning of nervous syst ...
* Cortical magnification * Frontal eye field * Tonotopy *
Visual space Visual space is the experience of space by an aware observer. It is the subjective counterpart of the space of physical objects. There is a long history in philosophy, and later psychology of writings describing visual space, and its relationsh ...


References

{{reflist Visual system