In
mathematics, specifically in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, residue-class-wise affine
groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
are certain
permutation groups
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
acting
Acting is an activity in which a story is told by means of its enactment by an actor or actress who adopts a character—in theatre, television, film, radio, or any other medium that makes use of the mimetic mode.
Acting involves a bro ...
on
(the
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s), whose elements are
bijective
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
residue-class-wise affine
mapping
Mapping may refer to:
* Mapping (cartography), the process of making a map
* Mapping (mathematics), a synonym for a mathematical function and its generalizations
** Mapping (logic), a synonym for functional predicate
Types of mapping
* Animated m ...
s.
A mapping
is called residue-class-wise affine
if there is a nonzero integer
such that the restrictions of
to the
residue class
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his boo ...
es
(mod
) are all
affine
Affine may describe any of various topics concerned with connections or affinities.
It may refer to:
* Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology
* Affine cipher, a special case of the more general substi ...
. This means that for any
residue class
there are coefficients
such that the
restriction
Restriction, restrict or restrictor may refer to:
Science and technology
* restrict, a keyword in the C programming language used in pointer declarations
* Restriction enzyme, a type of enzyme that cleaves genetic material
Mathematics and log ...
of the mapping
to the
set is given by
:
.
Residue-class-wise affine groups are
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
, and they are accessible
to
computational investigations.
Many of them act
multiply transitively on
or on subsets thereof.
A particularly basic type of residue-class-wise affine
permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or p ...
s are the
class transpositions: given
disjoint
Disjoint may refer to:
*Disjoint sets, sets with no common elements
*Mutual exclusivity, the impossibility of a pair of propositions both being true
See also
*Disjoint union
*Disjoint-set data structure
{{disambig