HOME

TheInfoList



OR:

In mathematics, Brown's representability theorem in
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
gives
necessary and sufficient condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
s for a
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
''F'' on the
homotopy category In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed ...
''Hotc'' of pointed connected
CW complex In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generali ...
es, to the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
Set, to be a
representable functor In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets an ...
. More specifically, we are given :''F'': ''Hotc''op → Set, and there are certain obviously necessary conditions for ''F'' to be of type ''Hom''(—, ''C''), with ''C'' a pointed connected CW-complex that can be deduced from
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient. For technical reasons, the theorem is often stated for functors to the category of
pointed set In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a Set (mathematics), set and x_0 is an element of X called the base point (also spelled basepoint). Map (mathematics), Maps between pointed sets ...
s; in other words the sets are also given a base point.


Brown representability theorem for CW complexes

The representability theorem for CW complexes, due to Edgar H. Brown, is the following. Suppose that: # The functor ''F'' maps
coproducts In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coprod ...
(i.e.
wedge sum In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if ''X'' and ''Y'' are pointed spaces (i.e. topological spaces with distinguished basepoints x_0 and y_0) the wedge sum of ''X'' and ''Y'' is the ...
s) in ''Hotc'' to products in ''Set'': F(\vee_\alpha X_\alpha) \cong \prod_\alpha F(X_\alpha), # The functor ''F'' maps homotopy pushouts in ''Hotc'' to weak pullbacks. This is often stated as a Mayer–Vietoris axiom: for any CW complex ''W'' covered by two subcomplexes ''U'' and ''V'', and any elements ''u'' ∈ ''F''(''U''), ''v'' ∈ ''F''(''V'') such that ''u'' and ''v'' restrict to the same element of ''F''(''U'' ∩ ''V''), there is an element ''w'' ∈ ''F''(''W'') restricting to ''u'' and ''v'', respectively. Then ''F'' is representable by some CW complex ''C'', that is to say there is an isomorphism :''F''(''Z'') ≅ ''Hom''''Hotc''(''Z'', ''C'') for any CW complex ''Z'', which is
natural Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
in ''Z'' in that for any morphism from ''Z'' to another CW complex ''Y'' the induced maps ''F''(''Y'') → ''F''(''Z'') and ''Hom''''Hot''(''Y'', ''C'') → ''Hom''''Hot''(''Z'', ''C'') are compatible with these isomorphisms. The converse statement also holds: any functor represented by a CW complex satisfies the above two properties. This direction is an immediate consequence of basic category theory, so the deeper and more interesting part of the equivalence is the other implication. The representing object ''C'' above can be shown to depend functorially on ''F'': any
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
from ''F'' to another functor satisfying the conditions of the theorem necessarily induces a map of the representing objects. This is a consequence of Yoneda's lemma. Taking ''F''(''X'') to be the
singular cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
group ''H''''i''(''X'',''A'') with coefficients in a given abelian group ''A'', for fixed ''i'' > 0; then the representing space for ''F'' is the
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. ...
''K''(''A'', ''i''). This gives a means of showing the existence of Eilenberg-MacLane spaces.


Variants

Since the homotopy category of CW-complexes is equivalent to the localization of the category of all topological spaces at the weak homotopy equivalences, the theorem can equivalently be stated for functors on a category defined in this way. However, the theorem is false without the restriction to ''connected'' pointed spaces, and an analogous statement for unpointed spaces is also false. A similar statement does, however, hold for spectra instead of CW complexes. Brown also proved a general categorical version of the representability theorem, which includes both the version for pointed connected CW complexes and the version for spectra. A version of the representability theorem in the case of triangulated categories is due to Amnon Neeman. Together with the preceding remark, it gives a criterion for a (covariant) functor ''F'': ''C'' → ''D'' between triangulated categories satisfying certain technical conditions to have a right
adjoint functor In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
. Namely, if ''C'' and ''D'' are triangulated categories with ''C'' compactly generated and ''F'' a triangulated functor commuting with arbitrary direct sums, then ''F'' is a left adjoint. Neeman has applied this to proving the Grothendieck duality theorem in algebraic geometry.
Jacob Lurie Jacob Alexander Lurie (born December 7, 1977) is an American mathematician who is a professor at the Institute for Advanced Study. In 2014, Lurie received a MacArthur Fellowship. Lurie's research interests are algebraic geometry, topology, and ...
has proved a version of the Brown representability theorem for the homotopy category of a pointed quasicategory with a compact set of generators which are cogroup objects in the homotopy category. For instance, this applies to the homotopy category of pointed connected CW complexes, as well as to the unbounded
derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
of a Grothendieck abelian category (in view of Lurie's higher-categorical refinement of the derived category).


References

{{Reflist, colwidth=30em Category theory Representable functors Theorems in homotopy theory