In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
and
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, relative dimension is the dual notion to
codimension
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties.
For affine and projective algebraic varieties, the codimension equals ...
.
In linear algebra, given a
quotient map , the difference dim ''V'' − dim ''Q'' is the relative dimension; this equals the dimension of the
kernel.
In
fiber bundle
In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
s, the relative dimension of the map is the dimension of the fiber.
More abstractly, the codimension of a map is the dimension of the
cokernel
The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of .
Cokernels are dual to the kernels of category theory, hence the nam ...
, while the relative dimension of a map is the dimension of the
kernel.
These are dual in that the inclusion of a subspace
of codimension ''k'' dualizes to yield a quotient map
of relative dimension ''k'', and conversely.
The additivity of codimension under intersection corresponds to the additivity of relative dimension in a
fiber product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is writte ...
. Just as codimension is mostly used for
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
maps, relative dimension is mostly used for
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
maps.
References
Algebraic geometry
Geometric topology
Linear algebra
Dimension
{{geometry-stub