Reductive elimination is an
elementary step in
organometallic chemistry in which the
oxidation state
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. ...
of the metal center decreases while forming a new
covalent bond between two
ligand
In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ele ...
s. It is the
microscopic reverse of
oxidative addition
Oxidative addition and reductive elimination are two important and related classes of reactions in organometallic chemistry. Oxidative addition is a process that increases both the oxidation state and coordination number of a metal centre. Oxid ...
, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive elimination are reverse reactions, the same mechanisms apply for both processes, and the product equilibrium depends on the thermodynamics of both directions.
General information
Reductive elimination is often seen in higher oxidation states, and can involve a two-electron change at a single metal center (mononuclear) or a one-electron change at each of two metal centers (binuclear, dinuclear, or bimetallic).
[
]
For mononuclear reductive elimination, the oxidation state of the metal decreases by two, while the d-electron count of the metal increases by two. This pathway is common for d8 metals Ni(II), Pd(II), and Au(III) and d6 metals Pt(IV), Pd(IV), Ir(III), and Rh(III). Additionally, mononuclear reductive elimination requires that the groups being eliminated must be cis to one another on the metal center.
For binuclear reductive elimination, the oxidation state of each metal decreases by one, while the d-electron count of each metal increases by one. This type of reactivity is generally seen with first row metals, which prefer a one-unit change in oxidation state, but has been observed in both second and third row metals.
Mechanisms
As with oxidative addition, several mechanisms are possible with reductive elimination. The prominent mechanism is a concerted
In chemistry, a concerted reaction is a chemical reaction in which all bond breaking and bond making occurs in a single step. Reactive intermediates or other unstable high energy intermediates are not involved. Concerted reaction rates tend not ...
pathway, meaning that it is a nonpolar, three-centered transition state
In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked ...
with retention of stereochemistry
Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereo ...
. In addition, an SN2 mechanism, which proceeds with inversion of stereochemistry, or a radical mechanism, which proceeds with obliteration of stereochemistry, are other possible pathways for reductive elimination.[3
]
Octahedral complexes
The rate of reductive elimination is greatly influenced by the geometry of the metal complex. In octahedral complexes, reductive elimination can be very slow from the coordinatively saturated center, and often, reductive elimination only proceeds via a dissociative
Dissociatives, colloquially dissos, are a subclass of hallucinogens which distort perception of sight and sound and produce feelings of detachment – dissociation – from the environment and/or self. Although many kinds of drugs are capable of ...
mechanism, where a ligand must initially dissociate to make a five-coordinate complex. This complex adopts a Y-type distorted trigonal bipyramidal structure where a π-donor ligand is at the basal position and the two groups to be eliminated are brought very close together. After elimination, a T-shaped three-coordinate complex is formed, which will associate with a ligand to form the square planar
The square planar molecular geometry in chemistry describes the stereochemistry (spatial arrangement of atoms) that is adopted by certain chemical compounds. As the name suggests, molecules of this geometry have their atoms positioned at the corn ...
four-coordinate complex.
Square planar complexes
Reductive elimination of square planar complexes can progress through a variety of mechanisms: dissociative
Dissociatives, colloquially dissos, are a subclass of hallucinogens which distort perception of sight and sound and produce feelings of detachment – dissociation – from the environment and/or self. Although many kinds of drugs are capable of ...
, nondissociative, and associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
. Similar to octahedral complexes, a dissociative mechanism for square planar complexes initiates with loss of a ligand, generating a three-coordinate intermediate that undergoes reductive elimination to produce a one-coordinate metal complex. For a nondissociative pathway, reductive elimination occurs from the four-coordinate system to afford a two-coordinate complex. If the eliminating ligands are trans to each other, the complex must first undergo a trans to cis isomerization before eliminating. In an associative mechanism, a ligand must initially associate with the four-coordinate metal complex to generate a five-coordinate complex that undergoes reductive elimination synonymous to the dissociation mechanism for octahedral complexes.
Factors that affect reductive elimination
Reductive elimination is sensitive to a variety of factors including: 1) metal identity and electron density; 2) sterics; 3) participating ligands; 4) coordination number
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central i ...
; 5) geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
; and 6) photolysis/oxidation. Additionally, because reductive elimination and oxidative addition are reverse reactions, any sterics or electronics that enhance the rate of reductive elimination must thermodynamically hinder the rate of oxidative addition.[
]
Metal identity and electron density
First-row metal complexes tend to undergo reductive elimination faster than second-row metal complexes, which tend to be faster than third-row metal complexes. This is due to bond strength, with metal-ligand bonds in first-row complexes being weaker than metal-ligand bonds in third-row complexes. Additionally, electron-poor metal centers undergo reductive elimination faster than electron-rich metal centers since the resulting metal would gain electron density upon reductive elimination.
Sterics
Reductive elimination generally occurs more rapidly from a more sterically hindered metal center because the steric encumbrance is alleviated upon reductive elimination. Additionally, wide ligand bite angles generally accelerate reductive elimination because the sterics force the eliminating groups closer together, which allows for more orbital overlap.
Participating ligands
Kinetics
Kinetics ( grc, κίνησις, , kinesis, ''movement'' or ''to move'') may refer to:
Science and medicine
* Kinetics (physics), the study of motion and its causes
** Rigid body kinetics, the study of the motion of rigid bodies
* Chemical k ...
for reductive elimination are hard to predict, but reactions that involve hydride
In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of ...
s are particularly fast due to effects of orbital overlap in the transition state.
Coordination number
Reductive elimination occurs more rapidly for complexes of three- or five-coordinate metal centers than for four- or six-coordinate metal centers. For even coordination number complexes, reductive elimination leads to an intermediate with a strongly metal-ligand antibonding orbital
In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more ...
. When reductive elimination occurs from odd coordination number complexes, the resulting intermediate occupies a nonbonding molecular orbital.
Geometry
Reductive elimination generally occurs faster for complexes whose structures resemble the product.[
]
Photolysis/oxidation
Reductive elimination can be induced by oxidizing the metal center to a higher oxidation state via light or an oxidant.
Applications
Reductive elimination has found widespread application in academia and industry, most notable being hydrogenation
Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate org ...
, the Monsanto acetic acid process
The Monsanto process is an industrial method for the manufacture of acetic acid by catalytic carbonylation of methanol. The Monsanto process has largely been supplanted by the Cativa process, a similar iridium-based process developed by BP Chemic ...
, hydroformylation, and cross-coupling reaction
In organic chemistry, a cross-coupling reaction is a reaction where two fragments are joined together with the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M (R = organic fragment, M ...
s. In many of these catalytic cycles, reductive elimination is the product forming step and regenerates the catalyst; however, in the Heck reaction and Wacker process
The Wacker process or the Hoechst-Wacker process (named after the chemical companies of the same name) refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride as the catalyst. This chemical reaction was one of ...
, reductive elimination is involved only in catalyst regeneration, as the products in these reactions are formed via β–hydride elimination.
References
{{reflist
Chemical reactions
Coordination chemistry
Organometallic chemistry
Reaction mechanisms
Redox