HOME

TheInfoList



OR:

In
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar worki ...
, dominance is the phenomenon of one variant (
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
) of a
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
on a
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
in one of the genes, either new (''de novo'') or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (
autosomes An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosomes ...
) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant,
X-linked recessive X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be always expressed in males (who are necessarily homozygous for the gene mutation because they have one X and one ...
or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child (see Sex linkage). Since there is only one copy of the
Y chromosome The Y chromosome is one of two sex chromosomes ( allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or a ...
, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits. Dominance is a key concept in
Mendelian inheritance Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later populari ...
and classical genetics. Letters and Punnett squares are used to demonstrate the principles of dominance in teaching, and the use of upper case letters for dominant alleles and lower case letters for recessive alleles is a widely followed convention. A classic example of dominance is the inheritance of
seed A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiosper ...
shape in peas. Peas may be round, associated with allele ''R'', or wrinkled, associated with allele ''r''. In this case, three combinations of alleles (genotypes) are possible: ''RR'', ''Rr'', and ''rr''. The ''RR'' (
homozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
) individuals have round peas, and the ''rr'' (homozygous) individuals have wrinkled peas. In ''Rr'' (
heterozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
) individuals, the ''R'' allele masks the presence of the ''r'' allele, so these individuals also have round peas. Thus, allele ''R'' is dominant over allele ''r'', and allele ''r'' is recessive to allele ''R''. Dominance is not inherent to an allele or its traits (
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological prop ...
). It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third and
co-dominant In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
with a fourth. Additionally, one allele may be dominant for one trait but not others. Dominance differs from epistasis, the phenomenon of an allele of one gene masking the effect of alleles of a ''different'' gene.


Background

The concept of dominance was introduced by Gregor Johann Mendel. Though Mendel, "The Father of Genetics", first used the term in the 1860s, it was not widely known until the early twentieth century. Mendel observed that, for a variety of traits of garden peas having to do with the appearance of seeds, seed pods, and plants, there were two discrete phenotypes, such as round versus wrinkled seeds, yellow versus green seeds, red versus white flowers or tall versus short plants. When bred separately, the plants always produced the same phenotypes, generation after generation. However, when lines with different phenotypes were crossed (interbred), one and only one of the parental phenotypes showed up in the offspring (green, or round, or red, or tall). However, when these hybrid plants were crossed, the offspring plants showed the two original phenotypes, in a characteristic 3:1 ratio, the more common phenotype being that of the parental hybrid plants. Mendel reasoned that each parent in the first cross was a homozygote for different alleles (one parent AA and the other parent aa), that each contributed one allele to the offspring, with the result that all of these hybrids were heterozygotes (Aa), and that one of the two alleles in the hybrid cross dominated expression of the other: A masked a. The final cross between two heterozygotes (Aa X Aa) would produce AA, Aa, and aa offspring in a 1:2:1 genotype ratio with the first two classes showing the (A) phenotype, and the last showing the (a) phenotype, thereby producing the 3:1 phenotype ratio. Mendel did not use the terms gene, allele, phenotype, genotype, homozygote, and heterozygote, all of which were introduced later. He did introduce the notation of capital and lowercase letters for dominant and recessive alleles, respectively, still in use today. In 1928, British population geneticist
Ronald Fisher Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who ...
proposed that dominance acted based on natural selection through the contribution of modifier genes. In 1929, American geneticist
Sewall Wright Sewall Green Wright FRS(For) Honorary FRSE (December 21, 1889March 3, 1988) was an American geneticist known for his influential work on evolutionary theory and also for his work on path analysis. He was a founder of population genetics alon ...
responded by stating that dominance is simply a physiological consequence of metabolic pathways and the relative necessity of the gene involved. Wright's explanation became a fact in genetics, and the debate was largely ended. Some traits may have their dominance influenced by evolutionary mechanisms, however.


Chromosomes, genes, and alleles

Most animals and some plants have paired
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s, and are described as
diploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respecti ...
. They have two versions of each chromosome, one contributed by the mother's
ovum The egg cell, or ovum (plural ova), is the female reproductive cell, or gamete, in most anisogamous organisms (organisms that reproduce sexually with a larger, female gamete and a smaller, male one). The term is used when the female gamete i ...
, and the other by the father's sperm, known as
gamete A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
s, described as haploid, and created through
meiosis Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately ...
. These gametes then fuse during
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Pro ...
during
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote th ...
, into a new single cell
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicell ...
, which divides multiple times, resulting in a new organism with the same number of pairs of chromosomes in each (non-gamete) cell as its parents. In mammalian genetics, autosomal dominant disorders have pedigrees that demonstrate a vertical pattern of inheritance. Each chromosome of a matching (homologous) pair is structurally similar to the other, and has a very similar DNA
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
(
loci Locus (plural loci) is Latin for "place". It may refer to: Entertainment * Locus (comics), a Marvel Comics mutant villainess, a member of the Mutant Liberation Front * ''Locus'' (magazine), science fiction and fantasy magazine ** '' Locus Award ...
, singular locus). The DNA in each chromosome functions as a series of discrete
genes In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
that influence various traits. Thus, each gene also has a corresponding homologue, which may exist in different versions called
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
s. The alleles at the same locus on the two homologous chromosomes may be identical or different. For example, the
blood type A blood type (also known as a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrat ...
of humans is determined by the ABO gene which encodes variants of an enzyme that creates the A, B, AB, or O blood type located on the long or q arm of chromosome nine (9q34.2). There are three different alleles that could be present at this locus, but only two can be present in any individual, one inherited from their mother and one from their father. If two alleles of a given gene are identical, the organism is called a
homozygote Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
and is said to be homozygous with respect to that gene; if instead the two alleles are different, the organism is a
heterozygote Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
and is heterozygous. The genetic makeup of an organism, either at a single locus or over all its genes collectively, is called its
genotype The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
. The genotype of an organism, directly and indirectly, affects its molecular, physical, and other traits, which individually or collectively are called its
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological prop ...
. At heterozygous gene loci, the two alleles interact to produce the phenotype.


Types of Dominance


Complete dominance

In complete dominance, the effect of one allele in a heterozygous genotype completely masks the effect of the other. The allele that masks is considered ''dominant'' to the other allele, and the masked allele is considered ''recessive''. Complete dominance in a heterozygote's phenotype is indistinguishable from a dominant homozygote's phenotype. A classic example of complete dominance is the inheritance of seed shape (pea shape) in peas. Peas may be round (associated with allele ''R'') or wrinkled (associated with allele ''r''). In this case, three combinations of alleles (
genotypes The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
) are possible: ''RR, rr, Rr.'' ''RR'' and ''rr'' are homozygous, and ''Rr'' is heterozygous. The ''RR'' individuals have round peas and the ''rr'' individuals have wrinkled peas. In ''Rr'' individuals, the ''R'' allele masks the presence of the ''r'' allele, so these individuals also have round peas. Thus, allele ''R'' is completely dominant to allele ''r'', and allele ''r'' is recessive to allele ''R''.


Incomplete dominance

Incomplete dominance (also called ''partial dominance'', ''semi-dominance'' or ''intermediate inheritance'') occurs when the phenotype of the heterozygous genotype is distinct from and often intermediate to the phenotypes of the homozygous genotypes. The phenotypic result often appears as a blended form of characteristics in heterozygous state. For example, the snapdragon flower color is homozygous for either red or white. When the red homozygous flower is paired with the white homozygous flower, the result yields a pink snapdragon flower. The pink snapdragon is the result of incomplete dominance. A similar type of incomplete dominance is found in the four o'clock plant wherein pink color is produced when true-bred parents of white and red flowers are crossed. In
quantitative genetics Quantitative genetics deals with phenotypes that vary continuously (such as height or mass)—as opposed to discretely identifiable phenotypes and gene-products (such as eye-colour, or the presence of a particular biochemical). Both branches ...
, where phenotypes are measured and treated numerically, if a heterozygote's phenotype is exactly between (numerically) that of the two homozygotes, the phenotype is said to exhibit ''no dominance'' at all, i.e. dominance exists only when the heterozygote's phenotype measure lies closer to one homozygote than the other. When plants of the F1 generation are self-pollinated, the phenotypic and genotypic ratio of the F2 generation will be 1:2:1 (Red:Pink:White). See partial dominance hypothesis.


Co-dominance

Co-dominance occurs when the contributions of both alleles are visible in the phenotype and neither allele masks another. For example, in the
ABO blood group system The ABO blood group system is used to denote the presence of one, both, or neither of the A and B antigens on erythrocytes. For human blood transfusions, it is the most important of the 43 different blood type (or group) classification syste ...
, chemical modifications to a
glycoprotein Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as g ...
(the H antigen) on the surfaces of blood cells are controlled by three alleles, two of which are co-dominant to each other (''IA'', ''IB'') and dominant over the recessive ''i'' at the ABO locus. The ''IA'' and ''IB'' alleles produce different modifications. The enzyme coded for by ''IA'' adds an N-acetylgalactosamine to a membrane-bound H antigen. The ''IB'' enzyme adds a galactose. The ''i'' allele produces no modification. Thus the ''IA'' and ''IB'' alleles are each dominant to ''i'' (''IAIA'' and ''IAi'' individuals both have type A blood, and ''IBIB'' and ''IBi'' individuals both have type B blood), but ''IAIB'' individuals have both modifications on their blood cells and thus have type AB blood, so the ''IA'' and ''IB'' alleles are said to be co-dominant. Another example occurs at the locus for the beta-globin component of
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
, where the three molecular phenotypes of ''HbA/HbA'', ''HbA/HbS'', and ''HbS/HbS'' are all distinguishable by protein electrophoresis. (The medical condition produced by the heterozygous genotype is called '' sickle-cell trait'' and is a milder condition distinguishable from '' sickle-cell anemia'', thus the alleles show ''incomplete dominance'' with respect to anemia, see above). For most gene loci at the molecular level, both alleles are expressed co-dominantly, because both are transcribed into
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
. Co-dominance, where allelic products co-exist in the phenotype, is different from incomplete dominance, where the quantitative interaction of allele products produces an intermediate phenotype. For example, in co-dominance, a red homozygous flower and a white homozygous flower will produce offspring that have red and white spots. When plants of the F1 generation are self-pollinated, the phenotypic and genotypic ratio of the F2 generation will be 1:2:1 (Red:Spotted:White). These ratios are the same as those for incomplete dominance. Again, this classical terminology is inappropriate – in reality such cases should not be said to exhibit dominance at all.


Addressing common misconceptions

Dominance relates to the relationship between two versions of a gene. A dominant trait is usually in correspondence to inheritance patterns that can be seen in Punnett Squares. If an individual has two versions of a gene, then the gene that is frequently observed in further generations is considered "dominant". In genetics, there are a few misconceptions that are fairly common. It is thought that a dominant trait is "stronger" and "overpowers" a recessive trait. Dominant traits are also assumed more likely to be inherited as well as more prevalent in a population. The idea of dominant traits being male or masculine is another common misconception. The emergence of these different ideas is due to the various concepts of dominance in non-genetic settings; such as being strong, powerful and controlling; which differs from the genetic concept of dominance. Dominance does not determine whether an allele is deleterious, neutral, or advantageous. However,
selection Selection may refer to: Science * Selection (biology), also called natural selection, selection in evolution ** Sex selection, in genetics ** Mate selection, in mating ** Sexual selection in humans, in human sexuality ** Human mating strat ...
must operate on genes indirectly through phenotypes and dominance affects the exposure of alleles in phenotypes, hence the rate of change in allele frequencies under selection. Deleterious recessive alleles may persist in a population at low frequencies, with most copies carried in heterozygotes, at no cost to those individuals. These rare recessives are the basis for many hereditary
genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorde ...
s.


Nomenclature

In genetics, symbols began as algebraic placeholders. When one allele is dominant to another, the oldest convention is to symbolize the dominant allele with a capital letter. The recessive allele is assigned the same letter in lower case. In the pea example, once the dominance relationship between the two alleles is known, it is possible to designate the dominant allele that produces a round shape by a capital-letter symbol R, and the recessive allele that produces a wrinkled shape by a lower-case symbol r. The homozygous dominant, heterozygous, and homozygous recessive genotypes are then written RR, Rr, and rr, respectively. It would also be possible to designate the two alleles as W and w, and the three genotypes WW, Ww, and ww, the first two of which produced round peas and the third wrinkled peas. The choice of "R" or "W" as the symbol for the dominant allele does not pre-judge whether the allele causing the "round" or "wrinkled" phenotype when homozygous is the dominant one. A gene may have several alleles. Each allele is symbolized by the locus symbol followed by a unique superscript. In many species, the most common allele in the wild population is designated the wild type allele. It is symbolized with a + character as a superscript. Other alleles are dominant or recessive to the wild type allele. For recessive alleles, the locus symbol is in lower case letters. For alleles with any degree of dominance to the wild type allele, the first letter of the locus symbol is in upper case. For example, here are some of the alleles at the ''a'' locus of the laboratory mouse, ''Mus musculus'': ''Ay'', dominant yellow; ''a+'', wild type; and ''abt'', black and tan. The ''abt'' allele is recessive to the wild type allele, and the ''Ay'' allele is codominant to the wild type allele. The ''Ay'' allele is also codominant to the ''abt'' allele, but showing that relationship is beyond the limits of the rules for mouse genetic nomenclature. Rules of genetic nomenclature have evolved as genetics has become more complex. Committees have standardized the rules for some species, but not for all. Rules for one species may differ somewhat from the rules for a different species.


Relationship to other genetic concepts


Multiple alleles

Although any individual of a diploid organism has at most two different alleles at any one locus (barring aneuploidies), most genes exist in a large number of allelic versions in the population as a whole. If the alleles have different effects on the phenotype, sometimes their dominance relationships can be described as a series. For example, coat color in domestic cats is affected by a series of alleles of the ''TYR'' gene (which encodes the enzyme
tyrosinase Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin. The enzyme is mainly involved in two distinct reactions of melanin synthesis otherwise known as the Raper Mason pathway. Firstly, the hydroxyl ...
). The alleles ''C'', ''cb'', ''cs'', and ''ca'' (full colour,
Burmese Burmese may refer to: * Something of, from, or related to Myanmar, a country in Southeast Asia * Burmese people * Burmese language * Burmese alphabet * Burmese cuisine * Burmese culture Animals * Burmese cat * Burmese chicken * Burmese (hor ...
, Siamese, and
albino Albinism is the congenital absence of melanin in an animal or plant resulting in white hair, feathers, scales and skin and pink or blue eyes. Individuals with the condition are referred to as albino. Varied use and interpretation of the term ...
, respectively) produce different levels of pigment and hence different levels of colour dilution. The ''C'' allele (full colour) is completely dominant over the last three and the ''ca'' allele (albino) is completely recessive to the first three.


Autosomal ''versus'' sex-linked dominance

In humans and other mammal species, sex is determined by two sex chromosomes called the
X chromosome The X chromosome is one of the two sex-determining chromosomes ( allosomes) in many organisms, including mammals (the other is the Y chromosome), and is found in both males and females. It is a part of the XY sex-determination system and XO se ...
and the
Y chromosome The Y chromosome is one of two sex chromosomes ( allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or a ...
. Human females are XX; males are XY. The remaining pairs of chromosome are found in both sexes and are called autosomes; genetic traits associated with loci on these chromosomes are described as autosomal, and may be dominant or recessive. Genetic traits on the X and Y chromosomes are called sex-linked, because they are linked to sex chromosomes, not because they are characteristic of one sex or the other. In practice, the term almost always refers to X-linked traits and a great many such traits (such as red-green colour vision deficiency) are not affected by sex. Females have two copies of every gene locus found on the X chromosome, just as for the autosomes, and the same dominance relationships apply. Males, however, have only one copy of each X chromosome gene locus, and are described as hemizygous for these genes. The Y chromosome is much smaller than the X, and contains a much smaller set of genes, including, but not limited to, those that influence 'maleness', such as the SRY gene for testis determining factor. Dominance rules for sex-linked gene loci are determined by their behavior in the female: because the male has only one allele (except in the case of certain types of Y chromosome
aneuploidy Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with a ...
), that allele is always expressed regardless of whether it is dominant or recessive. Birds have opposite sex chromosomes: male birds have ZZ and female birds ZW chromosomes. However, inheritance of traits reminds XY-system otherwise; male zebra finches may carry white colouring gene in their one of two Z chromosome, but females develop white colouring always. Grasshoppers have XO-system. Females have XX, but males only X. There is no Y chromosome at all.


Epistasis

Epistasis ''epi'' + ''stasis'' = to sit on top"is an interaction between alleles at two ''different'' gene loci that affect a single trait, which may sometimes resemble a dominance interaction between two ''different'' alleles at the ''same'' locus. Epistasis modifies the characteristic 9:3:3:1 ratio expected for two non-epistatic genes. For two loci, 14 classes of epistatic interactions are recognized. As an example of ''recessive epistasis'', one gene locus may determine whether a flower pigment is yellow (AA or Aa) or green (aa), while another locus determines whether the pigment is produced (BB or Bb) or not (bb). In a bb plant, the flowers will be white, irrespective of the genotype of the other locus as AA, Aa, or aa. The bb combination is ''not'' dominant to the A allele: rather, the B gene shows ''recessive epistasis'' to the A gene, because the B locus when homozygous for the ''recessive'' allele (bb) suppresses phenotypic expression of the A locus. In a cross between two AaBb plants, this produces a characteristic 9:3:4 ratio, in this case of yellow : green : white flowers. In ''dominant epistasis'', one gene locus may determine yellow or green pigment as in the previous example: AA and Aa are yellow, and aa are green. A second locus determines whether a pigment precursor is produced (dd) or not (DD or Dd). Here, in a DD or Dd plant, the flowers will be colorless irrespective of the genotype at the ''A'' locus, because of the epistatic effect of the dominant D allele. Thus, in a cross between two AaDd plants, 3/4 of the plants will be colorless, and the yellow and green phenotypes are expressed only in dd plants. This produces a characteristic 12:3:1 ratio of white : yellow : green plants. ''Supplementary epistasis'' occurs when two loci affect the same phenotyp