Theory
TheMethodology
The basis for calculating a decompression schedule using ratio decompression is actually relatively simple (and certainly much simpler than the extremely complicated algorithms used by dive computers). The following represents a slightly simplified summary of the process. Not all versions of ratio deco use exactly the same procedure. The starting point is to ascertain the correct ratio (from whence the technique gets its name) of the amount of total decompression time as a ratio to the total bottom time. This ratio is fixed solely by reference to depth. Although on traditional tables the amount of decompression would vary according to time at depth, the basis of the theory that most dives will operate within a range of normalcy which makes the use of fixed ratios permissible. Certain depths establish certain ratios; a 1:1 ratio occurs at approximately ; a 2:1 ratio occurs at approximately . Between these depths, for each deeper or shallower than a fixed ratio depth, the diver will then add or subtract a specified number of minutes to their total decompression time. Accordingly, once the diver knows their planned depth and time, they can look up the most proximate ratio, calculate the difference in depths, and add or subtract the appropriate number of minutes from their total bottom time to give a total decompression time. Unlike traditional dive tables (but on a similar basis as dive computers which accumulate gas loading based on summation of ingassing at current depth over short intervals - ratio deco sums over 5 minute intervals while computers may refine this to 30 second intervals or less), ratio deco is calculated by reference to ''average'' depth rather than ''maximum'' depth. The technique also requires that the dive be divided into 5 minute segments, and the total decompression time accumulated for ''each'' 5 minute segment be calculated. To add an element of conservatism, divers lump 5 minute segments into pairs, and use the deeper depth of the pair to calculate the amount of decompression time accumulated. Once the diver has calculated the total required decompression time, they calculate the depth at which the deep stops commence. To do this, they calculate the absolute pressure (in atmospheres absolute) at their maximum depth, and multiplying this figure by either 6 (for feet) or 2 (for meters), and then deducting that figure from the maximum depth, and rounding up to the next shallower increment of .So for example, if the maximum depth was 180 feet, that is 6.5 ATA; multiplying out by 6 gives a figure of 39 feet. 180 − 39 = 141 feet, which is rounded up to 140 feet. In metric: max depth is 55 m, that is 6.5 ATA; 6.5 × 2 = 13; and 55 − 13 = 42 m (which doesn't need rounding). That is the depth at which the deep stops will commence, and is equivalent to a pressure of 80% of the pressure at maximum depth. The diver will then do standard deep stops at every until they reach the depth for the appropriate gas switch to their decompression gas. The diver is expected to do at least 3 minutes at the gas switch stop to acclimatise to the higherLimitations
Ratio decompression has never been adopted by more mainstream technical diver training agencies, such as TDI or IANTD. Although the safety record of ratio deco appears to be good, it suffers from a number of limitations. * The diver is generally limited to two potential bottom breathing mixes (specific mixes of Trimix). The technique does not work for deep air diving, or if a diver elects to use a bottom or decompression mix other than the ones used to develop the specific ratio deco model. * The variability suggests that increasingly greater risks are assumed at greater depths and for greater exposures; the modelling works much better when the decompression time to bottom time ratio is 1:1 or less. * Whilst the mathematical computations are manageable, it involves a greater degree of task loading, that appears unnecessary given the ready availability of dive computers and dive planning software. * It can result in the diver conducting more decompression than is necessary by adding several deep stops and an additional 6 minutes to surface after decompression time has elapsed. This criticism is probably unwarranted - almost all decompression software and computers result in a diver doing more decompression than, on average, is necessary; but because of lack of certainty over the physiology, a sizeable degree of conservatism is usually employed. GUE has not been keen on the wider use of the technique, and has always stressed that ratio deco should form part of the wider DIR philosophy espoused by the organisation. GUE has expressed concerns that divers trying to utilise the technique without proper training, or without employing DIR approach to skill development, hydration and fitness leads to an unacceptably high risk of decompression sickness. However, the technique has a history of successful decompressions, and regardless of theoretical efficiency and lack of formal validation, it has undoubted value in emergency situations where a dive plan is seriously compromised, and a personal dive computer, or appropriate contingency decompression schedule, is not in use.Independent review
Although to date no independent forensic review of ratio decompression as a decompression algorithm has been conducted, in his book ''Deco for Divers'', Mark Powell considers ratio decompression, and analyses it in slightly simplistic "flattening the curve" terms, illustrating it by way of comparison to certain more traditional models. Nonetheless, given the limited amount of forensic research available on any decompression algorithm, it is difficult to see what further comment the author would have been in a position to make.Footnotes
External links