In
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, a random geometric graph (RGG) is the mathematically simplest
spatial network
A spatial network (sometimes also geometric graph) is a graph in which the vertices or edges are ''spatial elements'' associated with geometric objects, i.e., the nodes are located in a space equipped with a certain metric.M. Barthelemy, "Mor ...
, namely an
undirected graph
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' v ...
constructed by randomly placing ''N''
nodes
In general, a node is a localized swelling (a "knot") or a point of intersection (a vertex).
Node may refer to:
In mathematics
*Vertex (graph theory), a vertex in a mathematical graph
*Vertex (geometry), a point where two or more curves, lines, ...
in some
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
(according to a specified probability distribution) and connecting two nodes by a
link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, ''r''.
Random geometric graphs resemble real human social networks in a number of ways. For instance, they spontaneously demonstrate
community structure
In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the par ...
- clusters of nodes with high
modularity
Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
. Other random graph generation algorithms, such as those generated using the
Erdős–Rényi model
In the mathematical field of graph theory, the Erdős–Rényi model is either of two closely related models for generating random graphs or the evolution of a random network. They are named after Hungarian mathematicians Paul Erdős and Alf ...
or
Barabási–Albert (BA) model do not create this type of structure. Additionally, random geometric graphs display degree
assortativity
Assortativity, or assortative mixing is a preference for a network's nodes to attach to others that are similar in some way. Though the specific measure of similarity may vary, network theorists often examine assortativity in terms of a node's de ...
according to their spatial dimension: "popular" nodes (those with many links) are particularly likely to be linked to other popular nodes.
A real-world application of RGGs is the modeling of
ad hoc networks. Furthermore they are used to perform
benchmarks for graph algorithms.
Definition

In the following, let denote an undirected
Graph
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
*Graph (topology), a topological space resembling a graph in the sense of discre ...
with a set of vertices and a set of edges . The set sizes are denoted by and . Additionally, if not noted otherwise, the
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
with the
euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore o ...
is considered, i.e. for any points