In mathematical complex analysis, Radó's theorem, proved by , states that every
connected Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
is
second-countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
(has a countable base for its topology).
The
Prüfer surface is an example of a surface with no countable base for the topology, so cannot have the structure of a Riemann surface.
The obvious analogue of Radó's theorem in higher dimensions is false: there are 2-dimensional connected complex manifolds that are not second-countable.
References
*
*
Riemann surfaces
Theorems in complex analysis
{{mathanalysis-stub