HOME

TheInfoList



OR:

Radar is a detection system that uses
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s to determine the distance ('' ranging''), angle, and
radial velocity The radial velocity or line-of-sight velocity, also known as radial speed or range rate, of a target with respect to an observer is the temporal rate of change, rate of change of the distance or Slant range, range between the two points. It is e ...
of objects relative to the site. It can be used to detect
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. ...
,
ships A ship is a large watercraft that travels the world's oceans and other sufficiently deep waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research, and fishing. Ships are generally distinguished ...
, spacecraft, guided missiles,
motor vehicle A motor vehicle, also known as motorized vehicle or automotive vehicle, is a self-propelled land vehicle, commonly wheeled, that does not operate on Track (rail transport), rails (such as trains or trams) and is used for the transportation of pe ...
s, weather formations, and terrain. A radar system consists of a transmitter producing
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
s in the
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transm ...
or
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequency, frequencies between 300 MHz and 300 GHz respectively. Different sources define different fre ...
s domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for
military A military, also known collectively as armed forces, is a heavily armed, highly organized force primarily intended for warfare. It is typically authorized and maintained by a sovereign state, with its members identifiable by their distin ...
use by several countries in the period before and during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
. A key development was the
cavity magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and currently in microwave ovens and linear particle accelerators. It generates microwaves using the interaction of a stream of electrons with a magnetic field ...
in the
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the European mainland, continental mainland. It comprises England, Scotlan ...
, which allowed the creation of relatively small systems with sub-meter resolution. The term ''RADAR'' was coined in 1940 by the United States Navy as an
acronym An acronym is a word or name formed from the initial components of a longer name or phrase. Acronyms are usually formed from the initial letters of words, as in '' NATO'' (''North Atlantic Treaty Organization''), but sometimes use syllables, a ...
for radio detection and ranging. The term ''radar'' has since entered English and other languages as a common noun, losing all capitalization. The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy, air-defense systems, anti-missile systems, marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems,
meteorological Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not ...
precipitation monitoring, altimetry and flight control systems,
guided missile In military terminology, a missile is a guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously unguided rocket ...
target locating systems, self-driving cars, and ground-penetrating radar for geological observations. High tech radar systems are associated with digital signal processing, machine learning and are capable of extracting useful information from very high noise levels. Other systems similar to radar make use of other parts of the electromagnetic spectrum. One example is
lidar Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
, which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driver-less vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents.


History


First experiments

As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov, a physics instructor at the Imperial Russian Navy school in
Kronstadt Kronstadt (russian: Кроншта́дт, Kronshtadt ), also spelled Kronshtadt, Cronstadt or Kronštádt (from german: link=no, Krone for " crown" and ''Stadt'' for "city") is a Russian port city in Kronshtadtsky District of the federal city ...
, developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter. In 1897, while testing this equipment for communicating between two ships in the
Baltic Sea The Baltic Sea is an arm of the Atlantic Ocean that is enclosed by Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden and the North and Central European Plain. The sea stretches from 53°N to 66°N latitude and fr ...
, he took note of an
interference beat In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, ''perceived'' as a periodic variation in volume whose rate is the difference of the two frequencies. With tuning instruments that can produce su ...
caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor
Christian Hülsmeyer Christian Hülsmeyer (Huelsmeyer) (25 December 1881 – 31 January 1957) was a German inventor, physicist and entrepreneur. He is credited with the invention of radar, although his apparatus, called the "Telemobiloscope," could not directly measu ...
was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for a full radar system, that he called a ''telemobiloscope''. It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in
Cologne Cologne ( ; german: Köln ; ksh, Kölle ) is the largest city of the German western state of North Rhine-Westphalia (NRW) and the fourth-most populous city of Germany with 1.1 million inhabitants in the city proper and 3.6 millio ...
and Rotterdam harbour but was rejected. In 1915,
Robert Watson-Watt Sir Robert Alexander Watson Watt (13 April 1892 – 5 December 1973) was a Scottish pioneer of radio direction finding and radar technology. Watt began his career in radio physics with a job at the Met Office, where he began looking for accur ...
used radio technology to provide advance warning to airmen and during the 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays a ...
and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of
radio direction finding Direction finding (DF), or radio direction finding (RDF), isin accordance with International Telecommunication Union (ITU)defined as radio location that uses the reception of radio waves to determine the direction in which a radio station ...
before turning his inquiry to
shortwave Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 me ...
transmission. Requiring a suitable receiver for such studies, he told the "new boy"
Arnold Frederic Wilkins Arnold Frederic Wilkins OBE (20 February 1907 – 5 August 1985) was a pioneer in developing the use of radar. It was Arnold Wilkins who suggested to his boss, Robert Watson-Watt, that reflected radio waves might be used to detect aircraf ...
to conduct an extensive review of available shortwave units. Wilkins would select a
General Post Office The General Post Office (GPO) was the state postal system and telecommunications carrier of the United Kingdom until 1969. Before the Acts of Union 1707, it was the postal system of the Kingdom of England, established by Charles II in 1660. ...
model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. Across the Atlantic in 1922, after placing a transmitter and receiver on opposite sides of the Potomac River, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through the beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later,
Lawrence A. Hyland Lawrence A. "Pat" Hyland (August 26, 1897 – November 24, 1989) was an American electrical engineer. He is one of three individuals, with whom are credited in major contributions to the invention of radar, but is probably best known as the man w ...
at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as a proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931, a writeup on the apparatus was entered in the ''Inventions Book'' maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low).


Just before World War II

Before the
Second World War World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
, researchers in the United Kingdom,
France France (), officially the French Republic ( ), is a country primarily located in Western Europe. It also comprises of overseas regions and territories in the Americas and the Atlantic, Pacific and Indian Oceans. Its metropolitan ar ...
,
Germany Germany, officially the Federal Republic of Germany (FRG),, is a country in Central Europe. It is the most populous member state of the European Union. Germany lies between the Baltic and North Sea to the north and the Alps to the sou ...
,
Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical ...
,
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the no ...
, the Netherlands, the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, ...
, and the United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, and
Hungary Hungary ( hu, Magyarország ) is a landlocked country in Central Europe. Spanning of the Carpathian Basin, it is bordered by Slovakia to the north, Ukraine to the northeast, Romania to the east and southeast, Serbia to the south, Croa ...
generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron, the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on the ocean liner ''Normandie'' in 1935. During the same period, Soviet military engineer P.K. Oshchepkov, in collaboration with the
Leningrad Electrotechnical Institute Saint Petersburg Electrotechnical University "LETI" (ETU, ETU "LETI", russian: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульян� ...
, produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following the arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2, entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as a pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page, working at the Naval Research Laboratory. The following year, the
United States Army The United States Army (USA) is the land warfare, land military branch, service branch of the United States Armed Forces. It is one of the eight Uniformed services of the United States, U.S. uniformed services, and is designated as the Army o ...
successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by
Rudolf Kühnhold Rudolf Kühnhold (1903–1992) was an experimental physicist who is often given credit for initiating research that led to the ''Funkmessgerät'' (radio measuring device – radar) in Germany. Early life A native of Schwallungen, Saxe-Meiningen, ...
and the firm in Germany and then another in June 1935 by an Air Ministry team led by
Robert Watson-Watt Sir Robert Alexander Watson Watt (13 April 1892 – 5 December 1973) was a Scottish pioneer of radio direction finding and radar technology. Watt began his career in radio physics with a job at the Met Office, where he began looking for accur ...
in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such a system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding, the Air Member for Supply and Research was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented the device in GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry, Bawdsey Research Station located in Bawdsey Manor, near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home" along the East and South coasts of England in time for the outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. If German-aircraft detection had relied solely on the observations of ground-based individuals, Great Britain might have lost the Battle of Britain. The radar formed part of the " Dowding system" for collecting reports of enemy aircraft and coordinating the response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting the entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies.


During World War II

A key development was the
cavity magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and currently in microwave ovens and linear particle accelerators. It generates microwaves using the interaction of a stream of electrons with a magnetic field ...
in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared the technology with the U.S. during the 1940 Tizard Mission. In April 1940, ''
Popular Science ''Popular Science'' (also known as ''PopSci'') is an American digital magazine carrying popular science content, which refers to articles for the general reader on science and technology subjects. ''Popular Science'' has won over 58 awards, incl ...
'' showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 ''Popular Mechanics'' had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt was sent to the U.S. in 1941 to advise on air defense after Japan's
attack on Pearl Harbor The attack on Pearl HarborAlso known as the Battle of Pearl Harbor was a surprise military strike by the Imperial Japanese Navy Air Service upon the United States against the naval base at Pearl Harbor in Honolulu, Territory of Hawa ...
. Alfred Lee Loomis organized the secret MIT Radiation Laboratory at
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a Private university, private Land-grant university, land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern t ...
, Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including complementary navigation systems like Oboe used by the RAF's Pathfinder.


Applications

The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as hot ...
, aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted
ground-controlled approach In aviation a ground-controlled approach (GCA), is a type of service provided by air-traffic controllers whereby they guide aircraft to a safe landing, including in adverse weather conditions, based on primary radar images. Most commonly a GCA uses ...
systems in which the plane's position is observed on
precision approach radar Precision approach radar (PAR) is a type of radar guidance system designed to provide lateral and vertical guidance to an aircraft pilot for landing, until the landing threshold is reached. Controllers monitoring the PAR displays observe each airc ...
screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over a wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become the primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms, tornadoes, winter storms, precipitation types, etc.
Geologist A geologist is a scientist who studies the solid, liquid, and gaseous matter that constitutes Earth and other terrestrial planets, as well as the processes that shape them. Geologists usually study geology, earth science, or geophysics, alt ...
s use specialized ground-penetrating radars to map the composition of
Earth's crust Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
. Police forces use radar guns to monitor vehicle speeds on the roads. Smaller radar systems are used to detect human movement. Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common.


Principles


Radar signal

A radar system has a transmitter that emits
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s known as ''radar signals'' in predetermined directions. When these signals contact an object they are usually
reflected Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
or
scattered Scattered may refer to: Music * ''Scattered'' (album), a 2010 album by The Handsome Family * "Scattered" (The Kinks song), 1993 * "Scattered", a song by Ace Young * "Scattered", a song by Lauren Jauregui * "Scattered", a song by Green Day from ' ...
in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
—such as most metals, seawater, and wet ground. This makes the use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is ''moving'' either toward or away from the transmitter, there will be a slight change in the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from '' angular frequency''. Frequency is measured in hertz (Hz) which is ...
of the radio waves due to the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
. Radar receivers are usually, but not always, in the same location as the transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers. More sophisticated methods of
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light, infrared light, and ultraviolet light, are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection is intended.


Illumination

Radar relies on its own transmissions rather than light from the Sun or the Moon, or from
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
s emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called ''illumination'', although radio waves are invisible to the human eye as well as optical cameras.


Reflection

If
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) lig ...
travelling through one material meet another material, having a different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum, or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to the detection of aircraft and ships.
Radar absorbing material In materials science, radiation-absorbent material, usually known as RAM, is a material which has been specially designed and shaped to absorb incident RF radiation (also known as non-ionising radiation), as effectively as possible, from as ma ...
, containing resistive and sometimes
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
substances, is used on military vehicles to reduce radar reflection. This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of the target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror. If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering, an effect that creates Earth's blue sky and red sunsets. When the two length scales are comparable, there may be resonances. Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between the reflective surfaces. A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during a rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking
stealth aircraft Stealth aircraft are designed to avoid detection using a variety of technologies that reduce reflection/emission of radar, infrared, visible light, radio frequency (RF) spectrum, and audio, collectively known as stealth technology. The F-117 N ...
. These precautions do not totally eliminate reflection because of diffraction, especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff, are very reflective but do not direct the scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross section.


Radar range equation

The power ''Pr'' returning to the receiving antenna is given by the equation: :P_=\frac where * ''P''t = transmitter power * ''G''t = gain of the transmitting antenna * ''A''r =
effective aperture In electromagnetics and antenna theory, the aperture of an antenna is defined as "A surface, near or on an antenna, on which it is convenient to make assumptions regarding the field values for the purpose of computing fields at external points. T ...
(area) of the receiving antenna; this can also be expressed as \over, where :* \lambda = transmitted wavelength :* ''G''r = gain of receiving antenna * ''σ'' = radar cross section, or scattering coefficient, of the target * ''F'' = pattern propagation factor * ''R''t = distance from the transmitter to the target * ''R''r = distance from the target to the receiver. In the common case where the transmitter and the receiver are at the same location, ''R''t = ''R''r and the term ''R''t² ''R''r² can be replaced by ''R''4, where ''R'' is the range. This yields: :P_r = . This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance, which can be used to increase detection range and reduce transmit power. The equation above with ''F'' = 1 is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of
multipath In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and ref ...
and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered.


Doppler effect

Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects the detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems,
semi-active radar homing Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range Air-to-air missile, air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is ...
, active radar homing, weather radar, military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during the detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar is as follows, where F_D is Doppler frequency, F_T is transmit frequency, V_R is radial velocity, and C is the speed of light: :F_D = 2 \times F_T \times \left (\frac \right). Passive radar is applicable to electronic countermeasures and radio astronomy as follows: :F_D = F_T \times \left (\frac \right). Only the radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Vehicles and weather moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency (F_T) is pulsed, using a pulse repeat frequency of F_R, the resulting frequency spectrum will contain harmonic frequencies above and below F_T with a distance of F_R. As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F_R, called the Nyquist frequency, since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: :, F_D, < \frac Or when substituting with F_D: :, V_R, < \frac As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most , thus cannot reliably determine radial velocity of aircraft moving .


Polarization

In all
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
, the electric field is perpendicular to the direction of propagation, and the electric field direction is the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate a
fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu ...
surface, such as rocks or soil, and are used by navigation radars.


Limiting factors


Beam path and range

A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon. Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore, the signal is attenuated by the medium the beam crosses, and the beam disperses. The maximum range of conventional radar can be limited by a number of factors: * Line of sight, which depends on the height above the ground. Without a direct line of sight, the path of the beam is blocked. * The maximum non-ambiguous range, which is determined by the pulse repetition frequency. The maximum non-ambiguous range is the distance the pulse can travel to and return from before the next pulse is emitted. * Radar sensitivity and the power of the return signal as computed in the radar equation. This component includes factors such as the environmental conditions and the size (or radar cross section) of the target.


Noise

Signal noise is an internal source of random variations in the signal, which is generated by all electronic components. Reflected signals decline rapidly as distance increases, so noise introduces a radar range limitation. The noise floor and
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in deci ...
are two different measures of performance that affect range performance. Reflectors that are too far away produce too little signal to exceed the noise floor and cannot be detected. Detection requires a signal that exceeds the noise floor by at least the signal-to-noise ratio. Noise typically appears as random variations superimposed on the desired echo signal received in the radar receiver. The lower the power of the desired signal, the more difficult it is to discern it from the noise. The noise figure is a measure of the noise produced by a receiver compared to an ideal receiver, and this needs to be minimized.
Shot noise Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric