Machine learning with quantum computers
Quantum-enhanced machine learning refers toLinear algebra simulation with quantum amplitudes
A number of quantum algorithms for machine learning are based on the idea of amplitude encoding, that is, to associate theVariation Quantum Algorithms (VQAs)
VQAs are one of the most studied quantum algorithms as researchers expect that all the needed applications for the quantum computer will be using the VAQs and also VAQs seem to fulfill the expectation for gaining quantum supremacy. VQAs is a mixed quantum-classical approach where the quantum processor prepares quantum states and measurement is made and the optimization is done by a classical computer. VAQs are considered best for NISQ as VAQs are noise tolerant compared to other algorithms and give quantum superiority with only a few hundred qubits. Researchers have studied circuit-based algorithms to solve optimization problems and ground state energy of complex system which were difficult to solve or required a large time to do computational using a classical computer.Variation Quantum Circuits (VQCs)
Variation Quantum Circuits also known as Parametrized Quantum Circuits (PQCs) are based on Variation Quantum Algorithms (VQAs). VQCs consist of three parts, preparation of initial states, quantum circuit and measurement. Researchers are extensively studying VQCs, as it uses the power of quantum computation to learn in a short time and also use fewer parameters than its classical counterparts. It is theoretically and numerically proven that we can approximate non-linear functions on quantum circuits like that in neural network. Due to VQCs superiority, neural network has been replaced by VQCs in Reinforcement Learning tasks and Generative Algorithms. The intrinsic nature of quantum devices towards decoherence, random gate error and measurement errors caused to have high potential to limit the training of the variation circuits. Training the VQCs on the classical devices before employing them on quantum devices helps to overcome the problem of decoherence noise that came through the number of repetitions for training.Quantum Binary Classifier
Pattern reorganization is one of the important task of machine learning, binary classification is one of the tool or algorithms to find pattern. Binary classification is used in supervised learning and in unsupervised learning. In quantum machine learning, classical bits are converted in qubits and they are map to Hilbert space, complex value data are used in quantum binary classifier to used the advantage of Hilbert space. By exploiting, the quantum mechanic properties such as superposition, entanglement, interference the quantum binary classifier produces the accurate result in short period of time.Quantum machine learning algorithms based on Grover search
Another approach to improving classical machine learning with quantum information processing uses amplitude amplification methods based on Grover's search algorithm, which has been shown to solve unstructured search problems with a quadratic speedup compared to classical algorithms. These quantum routines can be employed for learning algorithms that translate into an unstructured search task, as can be done, for instance, in the case of the k-medians and the k-nearest neighbors algorithms. Another application is a quadratic speedup in the training of perceptron. An example of amplitude amplification being used in a machine learning algorithm is Grover's search algorithm minimization. In which a subroutine uses Grover's search algorithm to find an element less than some previously defined element. This can be done with an oracle that determines whether or not a state with a corresponding element is less than the predefined one. Grover's algorithm can then find an element such that our condition is met. The minimization is initialized by some random element in our data set, and iteratively does this subroutine to find the minimum element in the data set. This minimization is notably used in quantum k-medians, and it has a speed up of at least compared to classical versions of k-medians, where is the number of data points and is the number of clusters. Amplitude amplification is often combined with quantum walks to achieve the same quadratic speedup. Quantum walks have been proposed to enhance Google's PageRank algorithm as well as the performance of reinforcement learning agents in the projective simulation framework.Quantum-enhanced reinforcement learning
Reinforcement learning is a branch of machine learning distinct from supervised and unsupervised learning, which also admits quantum enhancements. In quantum-enhanced reinforcement learning, a quantum agent interacts with a classical or quantum environment and occasionally receives rewards for its actions, which allows the agent to adapt its behavior—in other words, to learn what to do in order to gain more rewards. In some situations, either because of the quantum processing capability of the agent, or due to the possibility to probe the environment in superpositions, a quantum speedup may be achieved. Implementations of these kinds of protocols have been proposed for systems of trapped ions and superconducting circuits. A quantum speedup of the agent's internal decision-making time has been experimentally demonstrated in trapped ions, while a quantum speedup of the learning time in a fully coherent (`quantum') interaction between agent and environment has been experimentally realized in a photonic setup.Quantum annealing
Quantum annealing is an optimization technique used to determine the local minima and maxima of a function over a given set of candidate functions. This is a method of discretizing a function with many local minima or maxima in order to determine the observables of the function. The process can be distinguished from Simulated annealing by the Quantum tunneling process, by which particles tunnel through kinetic or potential barriers from a high state to a low state. Quantum annealing starts from a superposition of all possible states of a system, weighted equally. Then the time-dependent Schrödinger equation guides the time evolution of the system, serving to affect the amplitude of each state as time increases. Eventually, the ground state can be reached to yield the instantaneous Hamiltonian of the system.NISQ Circuit as Quantum Model
As the depth of the quantum circuit advances on NISQ devices, the noise level rises, posing a significant challenge to accurately computing costs and gradients on training models. The noise tolerance will be improved by using the quantum perceptron and theQuantum Binary Classifier
Pattern reorganization is one of the important task of machine learning, binary classification is one of the tool or algorithms to find pattern. Binary classification is used in supervised learning and in unsupervised learning. In quantum machine learning, classical bits are converted in qubits and they are map to Hilbert space, complex value data are used in quantum binary classifier to used the advantage of Hilbert space. By exploiting, the quantum mechanic properties such as superposition, entanglement, interference the quantum binary classifier produces the accurate result in short period of time.Quantum sampling techniques
Sampling from high-dimensional probability distributions is at the core of a wide spectrum of computational techniques with important applications across science, engineering, and society. Examples includeQuantum neural networks
Quantum analogues or generalizations of classical neural nets are often referred to as quantum neural networks. The term is claimed by a wide range of approaches, including the implementation and extension of neural networks using photons, layered variational circuits or quantum Ising-type models. Quantum neural networks are often defined as an expansion on Deutsch's model of a quantum computational network. Within this model, nonlinear and irreversible gates, dissimilar to the Hamiltonian operator, are deployed to speculate the given data set. Such gates make certain phases unable to be observed and generate specific oscillations. Quantum neural networks apply the principals quantum information and quantum computation to classical neurocomputing. Current research shows that QNN can exponentially increase the amount of computing power and the degrees of freedom for a computer, which is limited for a classical computer to its size. A quantum neural network has computational capabilities to decrease the number of steps, qubits used, and computation time. The wave function to quantum mechanics is the neuron for Neural networks. To test quantum applications in a neural network, quantum dot molecules are deposited on a substrate of GaAs or similar to record how they communicate with one another. Each quantum dot can be referred as an island of electric activity, and when such dots are close enough (approximately 10 - 20 nm) electrons can tunnel underneath the islands. An even distribution across the substrate in sets of two create dipoles and ultimately two spin states, up or down. These states are commonly known as qubits with corresponding states of and in Dirac notation.Quantum Convolution Neural Network
A novel design for multi-dimensional vectors that uses circuits as convolution filters is QCNN. It was inspired by the advantages of CNNs and the power of QML. It is made using a combination of a variational quantum circuit(VQC) and a deep neural network(DNN), fully utilizing the power of extremely parallel processing on a superposition of a quantum state with a finite number of qubits. The main strategy is to carry out an iterative optimization process in the NISQ devices, without the negative impact of noise, which is possibly incorporated into the circuit parameter, and without the need for quantum error correction. The quantum circuit must effectively handle spatial information in order for QCNN to function as CNN. The convolution filter is the most basic technique for making use of spatial information. One or more quantum convolutional filters make up a quantum convolutional neural network (QCNN), and each of these filters transforms input data using a quantum circuit that can be created in an organized or randomized way. Three parts that make up the quantum convolutional filter are: the encoder, the parameterized quantum circuit (PQC), and the measurement. The quantum convolutional filter can be seen as an extension of the filter in the traditional CNN because it was designed with trainable parameters. Quantum neural networks take advantage of the hierarchical structures, and for each subsequent layer, the number of qubits from the preceding layer is decreased by a factor of two. For n input qubits, these structure have O(log(n)) layers, allowing for shallow circuit depth. Additionally, they are able to avoid "barren plateau," one of the most significant issues with PQC-based algorithms, ensuring trainability. Despite the fact that the QCNN model does not include the corresponding quantum operation, the fundamental idea of the pooling layer is also offered to assure validity. In QCNN architecture, the pooling layer is typically placed between succeeding convolutional layers. Its function is to shrink the representation's spatial size while preserving crucial features, which allows it to reduce the number of parameters, streamline network computing, and manage over-fitting. Such process can be accomplished applying full Tomography on the state to reduce it all the way down to one qubit and then processed it in subway. The most frequently used unit type in the pooling layer is max pooling, although there are other types as well. Similar to conventional feed-forward neural networks, the last module is a fully connected layer with full connections to all activations in the preceding layer. Translational invariance, which requires identical blocks of parameterized quantum gates within a layer, is a distinctive feature of the QCNN architecture.Dissipative Quantum Neural Network
Dissipative QNNs (DQNNs) are constructed from layers of qubits coupled by perceptron called building blocks, which have an arbitrary unitary design. Each node in the network layer of a DQNN is given a distinct collection of qubits, and each qubit is also given a unique quantum perceptron unitary to characterize it. The input states information are transported through the network in a feed-forward fashion, layer-to-layer transition mapping on the qubits of the two adjacent layers, as the name implies. Dissipative term also refers to the fact that the output layer is formed by the ancillary qubits while the input layers are dropped while tracing out the final layer. When performing a broad supervised learning task, DQNN are used to learn a unitary matrix connecting the input and output quantum states. The training data for this task consists of the quantum state and the corresponding classical labels. Inspired by the extremely successful classical Generative adversarial network(GAN), dissipative quantum generative adversarial network (DQGAN) is introduced for unsupervised learning of the unlabeled training data . The generator and the discriminator are the two DQNNs that make up a single DQGAN. The generator's goal is to create false training states that the discriminator cannot differentiate from the genuine ones, while the discriminator's objective is to separate the real training states from the fake states created by the generator. The relevant features of the training set are learned by the generator by alternate and adversarial training of the networks that aid in the production of sets that extend the training set. DQGAN has a fully quantum architecture and is trained in quantum data.Hidden quantum Markov models
Hidden quantum Markov models (HQMMs) are a quantum-enhanced version of classical Hidden Markov Models (HMMs), which are typically used to model sequential data in various fields like robotics andFully quantum machine learning
In the most general case of quantum machine learning, both the learning device and the system under study, as well as their interaction, are fully quantum. This section gives a few examples of results on this topic. One class of problem that can benefit from the fully quantum approach is that of 'learning' unknown quantum states, processes or measurements, in the sense that one can subsequently reproduce them on another quantum system. For example, one may wish to learn a measurement that discriminates between two coherent states, given not a classical description of the states to be discriminated, but instead a set of example quantum systems prepared in these states. The naive approach would be to first extract a classical description of the states and then implement an ideal discriminating measurement based on this information. This would only require classical learning. However, one can show that a fully quantum approach is strictly superior in this case. (This also relates to work on quantum pattern matching.) The problem of learning unitary transformations can be approached in a similar way. Going beyond the specific problem of learning states and transformations, the task of clustering also admits a fully quantum version, wherein both the oracle which returns the distance between data-points and the information processing device which runs the algorithm are quantum. Finally, a general framework spanning supervised, unsupervised and reinforcement learning in the fully quantum setting was introduced in, where it was also shown that the possibility of probing the environment in superpositions permits a quantum speedup in reinforcement learning. Such a speedup in the reinforcement-learning paradigm has been experimentally demonstrated in a photonic setup.Classical learning applied to quantum problems
The term "quantum machine learning" sometimes refers to classical machine learning performed on data from quantum systems. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other applications include learning Hamiltonians and automatically generating quantum experiments.Quantum learning theory
Quantum learning theory pursues a mathematical analysis of the quantum generalizations of classical learning models and of the possible speed-ups or other improvements that they may provide. The framework is very similar to that of classical computational learning theory, but the learner in this case is a quantum information processing device, while the data may be either classical or quantum. Quantum learning theory should be contrasted with the quantum-enhanced machine learning discussed above, where the goal was to consider specific problems and to use quantum protocols to improve the time complexity of classical algorithms for these problems. Although quantum learning theory is still under development, partial results in this direction have been obtained. The starting point in learning theory is typically a concept class, a set of possible concepts. Usually a concept is a function on some domain, such as . For example, the concept class could be the set of disjunctive normal form (DNF) formulas on n bits or the set of Boolean circuits of some constant depth. The goal for the learner is to learn (exactly or approximately) an unknown target concept from this concept class. The learner may be actively interacting with the target concept, or passively receiving samples from it. In active learning, a learner can make membership queries to the target concept c, asking for its value c(x) on inputs x chosen by the learner. The learner then has to reconstruct the exact target concept, with high probability. In the model of quantum exact learning, the learner can make membership queries in quantum superposition. If the complexity of the learner is measured by the number of membership queries it makes, then quantum exact learners can be polynomially more efficient than classical learners for some concept classes, but not more. If complexity is measured by the amount of time the learner uses, then there are concept classes that can be learned efficiently by quantum learners but not by classical learners (under plausible complexity-theoretic assumptions). A natural model of passive learning is Valiant's probably approximately correct (PAC) learning. Here the learner receives random examples (x,c(x)), where x is distributed according to some unknown distribution D. The learner's goal is to output a hypothesis function h such that h(x)=c(x) with high probability when x is drawn according to D. The learner has to be able to produce such an 'approximately correct' h for every D and every target concept c in its concept class. We can consider replacing the random examples by potentially more powerful quantum examples . In the PAC model (and the related agnostic model), this doesn't significantly reduce the number of examples needed: for every concept class, classical and quantum sample complexity are the same up to constant factors. However, for learning under some fixed distribution D, quantum examples can be very helpful, for example for learning DNF under the uniform distribution. When considering time complexity, there exist concept classes that can be PAC-learned efficiently by quantum learners, even from classical examples, but not by classical learners (again, under plausible complexity-theoretic assumptions). This passive learning type is also the most common scheme in supervised learning: a learning algorithm typically takes the training examples fixed, without the ability to query the label of unlabelled examples. Outputting a hypothesis h is a step of induction. Classically, an inductive model splits into a training and an application phase: the model parameters are estimated in the training phase, and the learned model is applied an arbitrary many times in the application phase. In the asymptotic limit of the number of applications, this splitting of phases is also present with quantum resources.Implementations and experiments
The earliest experiments were conducted using the adiabatic D-Wave quantum computer, for instance, to detect cars in digital images using regularized boosting with a nonconvex objective function in a demonstration in 2009. Many experiments followed on the same architecture, and leading tech companies have shown interest in the potential of quantum machine learning for future technological implementations. In 2013, Google Research, NASA, and the Universities Space Research Association launched theSkepticism
While machine learning itself is now not only a research field but an economically significant and fast growing industry andSee also
* Differentiable programming *References
{{emerging technologies, quantum=yes, other=yes Machine learning Quantum information science Theoretical computer science Emerging technologies Quantum programming