HOME

TheInfoList



OR:

Proper equilibrium is a refinement of
Nash Equilibrium In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed) ...
by Roger B. Myerson. Proper equilibrium further refines Reinhard Selten's notion of a trembling hand perfect equilibrium by assuming that more costly trembles are made with significantly smaller probability than less costly ones.


Definition

Given a normal form game and a parameter \epsilon > 0, a totally mixed strategy profile \sigma is defined to be \epsilon-proper if, whenever a player has two pure strategies s and s' such that the expected payoff of playing s is smaller than the expected payoff of playing s' (that is u(s,\sigma_)), then the probability assigned to s is at most \epsilon times the probability assigned to s'. The strategy profile of the game is said to be a proper equilibrium if it is a limit point, as \epsilon approaches 0, of a sequence of \epsilon-proper strategy profiles.


Example

The game to the right is a variant of Matching Pennies. Player 1 (row player) hides a penny and if Player 2 (column player) guesses correctly whether it is heads up or tails up, he gets the penny. In this variant, Player 2 has a third option: grabbing the penny without guessing. The
Nash equilibria In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed) ...
of the game are the strategy profiles where Player 2 grabs the penny with probability 1. Any mixed strategy of Player 1 is in (Nash) equilibrium with this pure strategy of Player 2. Any such pair is even trembling hand perfect. Intuitively, since Player 1 expects Player 2 to grab the penny, he is not concerned about leaving Player 2 uncertain about whether it is heads up or tails up. However, it can be seen that the unique proper equilibrium of this game is the one where Player 1 hides the penny heads up with probability 1/2 and tails up with probability 1/2 (and Player 2 grabs the penny). This unique proper equilibrium can be motivated intuitively as follows: Player 1 fully expects Player 2 to grab the penny. However, Player 1 still prepares for the unlikely event that Player 2 does not grab the penny and instead for some reason decides to make a guess. Player 1 prepares for this event by making sure that Player 2 has no information about whether the penny is heads up or tails up, exactly as in the original Matching Pennies game.


Proper equilibria of extensive games

One may apply the properness notion to extensive form games in two different ways, completely analogous to the two different ways
trembling hand perfection In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium ...
is applied to extensive games. This leads to the notions of normal form proper equilibrium and extensive form proper equilibrium of an extensive form game. It was shown by van Damme that a normal form proper equilibrium of an extensive form game is behaviorally equivalent to a quasi-perfect equilibrium of that game.


References

* Roger B. Myerson
Refinements of the Nash equilibrium concept
', 15:133-154, 1978. * Eric van Damme.
A relationship between perfect equilibria in extensive form games and proper equilibria in normal form games
" ' 13:1--13, 1984. {{Game theory Game theory equilibrium concepts Non-cooperative games