In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a profinite integer is an element of the
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
(sometimes pronounced as zee-hat or zed-hat)
:
where the
inverse limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits ca ...
of the
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
s
runs through all
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s
,
partially ordered by
divisibility
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a ''Multiple (mathematics), multiple'' of m. An integer n is divis ...
. By definition, this ring is the
profinite completion of the
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s
. By the
Chinese remainder theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
,
can also be understood as the
direct product of rings
In mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the ...
:
where the index
runs over all
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s, and
is the ring of
''p''-adic integers. This group is important because of its relation to
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
,
étale homotopy theory, and the ring of
adeles. In addition, it provides a basic tractable example of a
profinite group
In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.
The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
.
Construction
The profinite integers
can be constructed as the set of sequences
of residues represented as
such that
.
Pointwise addition and multiplication make it a commutative ring.
The ring of
integers
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
embeds into the ring of profinite integers by the canonical injection:
where
It is canonical since it satisfies the
universal property of profinite groups that, given any profinite group
and any group homomorphism
, there exists a unique
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
group homomorphism
with
.
Using Factorial number system
Every integer
has a unique representation in the
factorial number system
In combinatorics, the factorial number system (also known as factoradic), is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of ...
as
where
for every
, and only finitely many of
are nonzero.
Its factorial number representation can be written as
.
In the same way, a profinite integer can be uniquely represented in the factorial number system as an infinite string
, where each
is an integer satisfying
.
The digits
determine the value of the profinite integer mod
. More specifically, there is a ring homomorphism
sending
The difference of a profinite integer from an integer is that the "finitely many nonzero digits" condition is dropped, allowing for its factorial number representation to have infinitely many nonzero digits.
Using the Chinese Remainder theorem
Another way to understand the construction of the profinite integers is by using the
Chinese remainder theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
. Recall that for an integer
with
prime factorization
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a comp ...
of non-repeating primes, there is a
ring isomorphism
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
from the theorem. Moreover, any
surjection
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
will just be a map on the underlying decompositions where there are induced surjections
since we must have
. It should be much clearer that under the inverse limit definition of the profinite integers, we have the isomorphism
with the direct product of ''p''-adic integers.
Explicitly, the isomorphism is
by
where
ranges over all prime-power factors
of
, that is,
for some different prime numbers
.
Relations
Topological properties
The set of profinite integers has an induced topology in which it is a
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
, coming from the fact that it can be seen as a closed subset of the infinite
direct product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
which is compact with its
product topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
by
Tychonoff's theorem
In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov (whose surname sometimes is tra ...
. Note the topology on each finite group
is given as the
discrete topology
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
.
The topology on
can be defined by the metric,
Since addition of profinite integers is continuous,
is a compact Hausdorff
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
, and thus its
Pontryagin dual
In mathematics, Pontryagin duality is a duality (mathematics), duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numb ...
must be a discrete abelian group.
In fact, the Pontryagin dual of
is the abelian group
equipped with the discrete topology (note that it is not the subset topology inherited from
, which is not discrete). The Pontryagin dual is explicitly constructed by the function
where
is the character of the adele (introduced below)
induced by
.
Relation with adeles
The tensor product
is the
ring of finite adeles
of
where the symbol
means
restricted product In mathematics, the restricted product is a construction in the theory of topological groups.
Let I be an index set; S a finite subset of I. If G_i is a locally compact group for each i \in I, and K_i \subset G_i is an open compact subgroup for ea ...
. That is, an element is a sequence that is integral except at a finite number of places. There is an isomorphism
Applications in Galois theory and étale homotopy theory
For the
algebraic closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics.
Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
of order ''q,'' the Galois group can be computed explicitly. From the fact
where the automorphisms are given by the
Frobenius endomorphism
In commutative algebra and field theory (mathematics), field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative Ring (mathematics), rings with prime number, prime characteristic (algebra), ...
, the Galois group of the algebraic closure of
is given by the inverse limit of the groups
, so its Galois group is isomorphic to the group of profinite integers
which gives a computation of the
absolute Galois group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' ...
of a finite field.
Relation with étale fundamental groups of algebraic tori
This construction can be re-interpreted in many ways. One of them is from
étale homotopy type
In mathematics, especially in algebraic geometry, the étale homotopy type is an analogue of the homotopy type of topological spaces for algebraic varieties.
Roughly speaking, for a variety or scheme ''X'', the idea is to consider étale coverin ...
which defines the
étale fundamental group
The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.
Topological analogue/informal discussion
In algebraic topology, the fundamental group \pi_1(X,x) of ...
as the profinite completion of automorphisms
where
is an
étale cover. Then, the profinite integers are isomorphic to the group
from the earlier computation of the profinite Galois group. In addition, there is an embedding of the profinite integers inside the étale fundamental group of the
algebraic torus
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by \mathbf G_, \mathbb_m, or \mathbb, is a type of commutative affine algebraic group commonly found in Projective scheme, projective algebraic geometry and tor ...
since the covering maps come from the
polynomial maps
from the map of
commutative rings