Primitive recursive arithmetic (PRA) is a
quantifier-free formalization of the
natural numbers
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
. It was first proposed by Norwegian mathematician , as a formalization of his
finitistic conception of the
foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to
ε0, which is the
proof-theoretic ordinal of
Peano arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
.
[; however, Feferman calls this extension "no longer clearly finitary".] PRA's proof theoretic ordinal is ω
ω, where ω is the smallest
transfinite ordinal
In mathematics, transfinite numbers or infinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of in ...
. PRA is sometimes called ''Skolem arithmetic'', although that has another meaning, see
Skolem arithmetic.
The language of PRA can express arithmetic propositions involving
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s and any
primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
, including the operations of
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, and
exponentiation
In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
. PRA cannot explicitly quantify over the domain of natural numbers. PRA is often taken as the basic
metamathematical
formal system
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms.
In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in ma ...
for
proof theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof The ...
, in particular for
consistency proof
In deductive logic, a consistent theory (mathematical logic), theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no Formula (mathematical logic), formula \varphi such that both \varphi and its negat ...
s such as
Gentzen's consistency proof
Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a cer ...
of
first-order arithmetic
In first-order logic, a first-order theory is given by a set of axioms in some
language. This entry lists some of the more common examples used in model theory and some of their properties.
Preliminaries
For every natural mathematical structure ...
.
Language and axioms
The language of PRA consists of:
* A
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
number of variables ''x'', ''y'', ''z'',....
*The
propositional connectives
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, th ...
;
*The equality symbol ''='', the constant symbol 0, and the
successor
Successor may refer to:
* An entity that comes after another (see Succession (disambiguation))
Film and TV
* ''The Successor'' (1996 film), a film including Laura Girling
* The Successor (2023 film), a French drama film
* ''The Successor'' ( ...
symbol ''S'' (meaning ''add one'');
*A symbol for each
primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
.
The logical axioms of PRA are the:
*
Tautologies of the
propositional calculus
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contra ...
;
* Usual axiomatization of
equality
Equality generally refers to the fact of being equal, of having the same value.
In specific contexts, equality may refer to:
Society
* Egalitarianism, a trend of thought that favors equality for all people
** Political egalitarianism, in which ...
as an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
.
The logical rules of PRA are
modus ponens
In propositional logic, (; MP), also known as (), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P'' implies ''Q.'' ''P'' is true. Therefore, ''Q'' must ...
and
variable substitution.
The non-logical axioms are, firstly:
*
;
*
where
always denotes the negation of
so that, for example,
is a negated proposition.
Further, recursive defining equations for every
primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
may be adopted as axioms as desired. For instance, the most common characterization of the primitive recursive functions is as the 0 constant and successor function closed under projection, composition and primitive recursion. So for a (''n''+1)-place function ''f'' defined by primitive recursion over a ''n''-place base function ''g'' and (''n''+2)-place iteration function ''h'' there would be the defining equations:
*
*
Especially:
*
*
*
*
* ... and so on.
PRA replaces the
axiom schema of induction for
first-order arithmetic
In first-order logic, a first-order theory is given by a set of axioms in some
language. This entry lists some of the more common examples used in model theory and some of their properties.
Preliminaries
For every natural mathematical structure ...
with the rule of (quantifier-free) induction:
* From
and
, deduce
, for any predicate
In
first-order arithmetic
In first-order logic, a first-order theory is given by a set of axioms in some
language. This entry lists some of the more common examples used in model theory and some of their properties.
Preliminaries
For every natural mathematical structure ...
, the only
primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
s that need to be explicitly axiomatized are
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
. All other primitive recursive predicates can be defined using these two primitive recursive functions and
quantification over all
natural numbers
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
. Defining
primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
s in this manner is not possible in PRA, because it lacks quantifiers.
Logic-free calculus
It is possible to formalise PRA in such a way that it has no logical connectives at all—a sentence of PRA is just an equation between two terms. In this setting a term is a primitive recursive function of zero or more variables. gave the first such system. The rule of induction in Curry's system was unusual. A later refinement was given by . The
rule of induction in Goodstein's system is:
:
Here ''x'' is a variable, ''S'' is the successor operation, and ''F'', ''G'', and ''H'' are any primitive recursive functions which may have parameters other than the ones shown. The only other
inference rule
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the logical structure of valid arguments. If an argument with true premises follows a rule of inference then the co ...
s of Goodstein's system are substitution rules, as follows:
:
Here ''A'', ''B'', and ''C'' are any terms (primitive recursive functions of zero or more variables). Finally, there are symbols for any primitive recursive functions with corresponding defining equations, as in Skolem's system above.
In this way the propositional calculus can be discarded entirely. Logical operators can be expressed entirely arithmetically, for instance, the absolute value of the difference of two numbers can be defined by primitive recursion:
:
Thus, the equations ''x''=''y'' and
are equivalent. Therefore, the equations
and
express the logical
conjunction and
disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is ...
, respectively, of the equations ''x''=''y'' and ''u''=''v''.
Negation
In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
can be expressed as
.
See also
*
Elementary recursive arithmetic
*
Finite-valued logic
*
Heyting arithmetic
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.
Axiomatization
Heyting arithmetic can be characterized jus ...
*
Peano arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
*
Primitive recursive function
In computability theory, a primitive recursive function is, roughly speaking, a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop is fixed befor ...
*
Robinson arithmetic
In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. It is usually denoted Q.
Q is almost PA without the axiom schema of mathematical inducti ...
*
Second-order arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
*
Skolem arithmetic
Notes
References
*
*
*
*
**
*
*
*
Additional reading
*
{{Mathematical logic
Constructivism (mathematics)
Formal theories of arithmetic