Frameworks and languages
The most well known policy-based management architecture was specified jointly by the IETF and thePolicy conflicts
As with any programmable system, a policy-driven one can suffer from inconsistencies incurred by contradicting rules governing its behaviour. These are known as policy conflictsM. Charalambides, P. Flegkas, G. Pavlou, J.R. Loyola, A.K. Bandara, E.C. Lupu, M.S. Sloman, A. Russo, N. Dulay, “Policy Conflict Analysis for DiffServ Quality of Service Management,” IEEE Transactions on Network and Service Management, Vol. 6, No. 1, March 2009. and come about as a result of specification errors, omissions, or contradictory management operations and, in some cases, can have catastrophic effects on the operation of the managed system. They have also been described as being analogous to software bugsJ. Strassner, “Policy-Based Network Management,” Morgan Kaufmann Publishers, ISBN 1- 55860-859-1, 2004. that occur when two or more policies are activated simultaneously enforcing contradictory management operations on the system.Classification of policy conflicts
Policy conflicts are broadly classified into domain-independent and application-specific,E.C. Lupu, M.S. Sloman, “Conflicts in Policy-based Distributed Systems Management,” IEEE Transactions on Software Engineering - Special Issue on Inconsistency Management, Vol. 25, pp. 852-869, 1999. where the former, as the names suggest, are independent of the policy application, and the latter are bound by the constraints of the application domain. Example application domains that have been considered in the literature include quality of service (QoS) in IP networks,T. Samak, E. Al-Shaer, H. Li, “QoS Policy Modeling and Conflict Analysis,” proceedings of IEEE Workshop on Policies for Networks and Distributed Systems, New York, USA, June 2008. distributed systems,A.K. Bandara, E.C. Lupu, A. Russo, “Using Event Calculus to Formalise Policy Specification and Analysis,” proceedings of IEEE Workshop on Policies for Distributed Systems and Networks, Lake Como, Italy, June 2003. firewall security,E. Al-Shaer, H. Hamed, “Discovery of Policy Anomalies in Distributed Firewalls,” proceedings of IEEE Communications Society Conference, Hong Kong, March 2004.E. Al-Shaer, H. Hamed, “Modeling and Management of Firewall Policies,” IEEE Transactions on Network and Service Management, Vol. 1, No. 1, April 2004.E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan. Conflict Classification and Analysis of Distributed Firewall Policies. IEEE Journal on Selected Areas in Communications, Volume 23, No. 10, pp.2069 - 2084, October 2005. and call control in telecommunication networks.L. Blair, K. Turner, “Handling Policy Conflicts in Call Control,” proceedings of International Conference on Feature Interaction, Leicester, UK, June 2005. Policy conflicts can also be classified according to the time-frame at which they can be detected: static conflictsM. Charalambides, P. Flegkas, G. Pavlou, A.K. Bandara, E.C. Lupu, M.S. Sloman, A. Russo, N. Dulay, J.R. Loyola, “Policy Conflict Analysis for Quality of Service Management,” proceedings of IEEE Workshop on Policies for Distributed Systems and Networks, Stockholm, Sweden, June 2005. can be detected through off-line analysis at policy specification time, whereas dynamic conflictsM. Charalambides, P. Flegkas, G. Pavlou, J.R. Loyola, A.K. Bandara, E.C. Lupu, M.S. Sloman, A. Russo, N. Dulay, “Dynamic Policy Analysis and Conflict Resolution for DiffServ Quality of Service Management,” proceedings of IEEE/IFIP Network Operations and Management Symposium, Vancouver, Canada, April 2006. can only be detected when policies are enforced as they depend on the current state of the managed system. For example, conflicts can occur between policies for dynamically allocating resources and those setting quotas for users or classes of service. As such, automation should be a key aspect of dynamic analysis mechanisms so that the operational impact of a conflict can be kept to a minimum.Detection and resolution of policy conflicts
To effectively use policies and drive the functionality of a managed system in a consistent manner, it is necessary to check that newly created policies do not conflict with each other or with policies already deployed in the system. To achieve this, detection processes utilise information regarding the conditions under which conflicts can arise to search policy spaces and identify policies that meet the conflict criteria. Based on the types of conflicts identified in the literature and the different application domains in which they occur, research has concentrated in the development of mechanisms and techniques for their effective detection. Although simple conflicts (e.g. modality conflicts) can be detected by syntactic analysis, more specialised inconsistencies require a precise definition of the conditions for a conflict, which sometimes include domain-specific knowledge, and processes that utilise such information to signal the occurrence of a conflict. Popular approaches for the detection of conflicts have been based on: meta-policies (detection rules),A. Polyrakis and R. Boutaba. The Meta-Policy Information Base. IEEE Network, special issue on Policy-Based Networks, Vol.16, No. 2, pp. 40-48, 2002. policy relationships, applicability spaces,D. Agrawal, J. Giles, K.W. Lee, J. Lobo, “Policy Ratification,” proceedings of IEEE Workshop on Policies for Networks and Distributed Systems, Stockholm, Sweden, June 2005. and information models.S. Davy, B. Jennings, J. Strassner, “Application Domain Independent Policy Conflict Analysis Using Information Models,” proceedings of IEEE/IFIP Network Operations and Management Symposium, Bahia, Brazil, April 2008. Resolution is the latter part of policy analysis, which aims at handling detected inconsistencies, preferably in an automated manner, so that consistency among policies can be restored. The process of resolving conflicts may involve retracting, suppressing, prioritising, or amending policies, and in some cases, enforcing a new policy altogether so that consistency among policy rules can be restored. The methodology in doing so depends heavily on the type of policies involved and the domain in which conflicts occur. Although human intervention is unavoidable in some situations, several research efforts focussed on techniques to automate the resolution process where possible. Popular approaches for the resolution of conflicts have been based on: meta-policies (resolution rules), precedence, policy ordering, and conflict prevention.R. Chadha, Y. Cheng, J. Chiang, G. Levin, S.W. Li, A. Poylisher, L. LaVergne, S. Newman, “Scalable Policy Management for Ad Hoc Networks,” proceedings of Military Communications Conference, New Jersey, USA, October 2005. The time-frame at which conflicts can be detected influences the analysis methodology and requirements for dealing with them. Static conflicts are typically detected through analysis initiated manually by the system administrator; conflicts represent inconsistencies between policies and are typically resolved by amending the policies. In contrast, run-time conflicts must be detected by a process that monitors policy enforcement and detects inconsistent situations in the system’s execution. Resolution must be achieved automatically, for example through enforcing resolution rules. Lack of automation in the handling of run-time conflicts may have catastrophic consequences on the correct system operation, especially when managing QoS for delay sensitive applications.Policy refinement
Ideally, a policy-based management system should facilitate the definition of high-level administrative goals, which are easy for humans to express and understand, enable their translation into low-level policies and map them into commands that configure the managed devices accordingly. While the high-level goals reflect the business objectives of the network administrator, the low-level policies are responsible for device-level configurations. Policy refinement is the process of transforming a high-level goal or abstract policy specification into low-level, concrete policies that can be enforced on the managed system. The main tasks of the refinement process are the following: *Determine the resources that are needed to satisfy the requirements of the policy *Translate high-level goals into operational policies that the system can enforce *Verify that the low-level policies actually meet the requirements specified by the high-level goal Several policy refinement approaches have been developed. The most notable ones are based onSee also
*References
{{Reflist Network management Configuration management Computer networking