
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a partition of a set is a grouping of its elements into
non-empty subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s, in such a way that every element is included in exactly one subset.
Every
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a
setoid, typically in
type theory
In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems.
Some type theories serve as alternatives to set theory as a foundation of ...
and
proof theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof The ...
.
Definition and notation
A partition of a set ''X'' is a set of non-empty subsets of ''X'' such that every element ''x'' in ''X'' is in exactly one of these subsets (i.e., the subsets are nonempty mutually
disjoint sets
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ...
).
Equivalently, a
family of sets
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F of subsets of a given set S is called a family of su ...
''P'' is a partition of ''X'' if and only if all of the following conditions hold:
*The family ''P'' does not contain the
empty set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
(that is
).
*The
union of the sets in ''P'' is equal to ''X'' (that is
). The sets in ''P'' are said to exhaust or cover ''X''. See also
collectively exhaustive events and
cover (topology)
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a family of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\sub ...
.
* The
intersection
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of any two distinct sets in ''P'' is empty (that is
). The elements of ''P'' are said to be
pairwise disjoint
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ...
or mutually exclusive. See also
mutual exclusivity.
The sets in
are called the ''blocks'', ''parts'', or ''cells'', of the partition. If
then we represent the cell containing
by