HOME

TheInfoList



OR:

Atomic, molecular, and optical physics (AMO) is the study of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
–matter and
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
–matter interactions, at the scale of one or a few
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and
quantum In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
treatments. Typically, the theory and applications of emission, absorption,
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
(light) from excited
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s and
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s, analysis of spectroscopy, generation of
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s and masers, and the optical properties of matter in general, fall into these categories.


Atomic and molecular physics

Atomic physics is the subfield of AMO that studies atoms as an isolated system of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
, while molecular physics is the study of the physical properties of
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s. The term ''atomic physics'' is often associated with
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
and
nuclear bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s, due to the
synonym A synonym is a word, morpheme, or phrase that means precisely or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are a ...
ous use of ''atomic'' and ''nuclear'' in
standard English In an English-speaking country, Standard English (SE) is the variety of English that has undergone codification to the point of being socially perceived as the standard language, associated with formal schooling, language assessment, and off ...
. However, physicists distinguish between atomic physics — which deals with the atom as a system consisting of a nucleus and electrons — and
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies th ...
, which considers atomic nuclei alone. The important experimental techniques are the various types of
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
. Molecular physics, while closely related to
atomic physics Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned wit ...
, also overlaps greatly with theoretical chemistry,
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mech ...
and chemical physics. Both subfields are primarily concerned with electronic structure and the dynamical processes by which these arrangements change. Generally this work involves using quantum mechanics. For molecular physics, this approach is known as
quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
. One important aspect of molecular physics is that the essential
atomic orbital In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
theory in the field of atomic physics expands to the molecular orbital theory. Molecular physics is concerned with atomic processes in molecules, but it is additionally concerned with effects due to the
molecular structure Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that det ...
. Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate. These rotations and vibrations are quantized; there are discrete
energy level A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s. The smallest energy differences exist between different rotational states, therefore pure rotational spectra are in the far
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
region (about 30 - 150 μm
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
) of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
. Vibrational spectra are in the near infrared (about 1 - 5 Î¼m) and spectra resulting from electronic transitions are mostly in the visible and
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
regions. From measuring rotational and vibrational spectra properties of molecules like the distance between the nuclei can be calculated. As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider context of ''atomic, molecular, and optical physics''. Physics research groups are usually so classified.


Optical physics

Optical physics is the study of the generation of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, the properties of that radiation, and the interaction of that radiation with
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
, especially its manipulation and control. It differs from general
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
and
optical engineering Optical engineering is the field of engineering encompassing the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and utilization of light. Optical engineers use the science of optics to ...
in that it is focused on the discovery and application of new phenomena. There is no strong distinction, however, between optical physics, applied optics, and optical engineering, since the devices of optical engineering and the applications of applied optics are necessary for
basic research Basic research, also called pure research, fundamental research, basic science, or pure science, is a type of scientific research with the aim of improving scientific theories for better understanding and prediction of natural or other phenome ...
in optical physics, and that research leads to the development of new devices and applications. Often the same people are involved in both the basic research and the applied technology development, for example the experimental demonstration of electromagnetically induced transparency by S. E. Harris and of slow light by Harris and Lene Vestergaard Hau. Researchers in optical physics use and develop light sources that span the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
from
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s to
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s. The field includes the generation and detection of light, linear and nonlinear optical processes, and
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
.
Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s and laser spectroscopy have transformed optical science. Major study in optical physics is also devoted to
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
and coherence, and to femtosecond optics. In optical physics, support is also provided in areas such as the nonlinear response of isolated atoms to intense, ultra-short electromagnetic fields, the atom-cavity interaction at high fields, and quantum properties of the electromagnetic field. Other important areas of research include the development of novel optical techniques for nano-optical measurements, diffractive optics, low-coherence interferometry, optical coherence tomography, and near-field microscopy. Research in optical physics places an emphasis on ultrafast optical science and technology. The applications of optical physics create advancements in
communications Communication is commonly defined as the transmission of information. Its precise definition is disputed and there are disagreements about whether Intention, unintentional or failed transmissions are included and whether communication not onl ...
,
medicine Medicine is the science and Praxis (process), practice of caring for patients, managing the Medical diagnosis, diagnosis, prognosis, Preventive medicine, prevention, therapy, treatment, Palliative care, palliation of their injury or disease, ...
,
manufacturing Manufacturing is the creation or production of goods with the help of equipment, labor, machines, tools, and chemical or biological processing or formulation. It is the essence of the secondary sector of the economy. The term may refer ...
, and even
entertainment Entertainment is a form of activity that holds the attention and Interest (emotion), interest of an audience or gives pleasure and delight. It can be an idea or a task, but it is more likely to be one of the activities or events that have deve ...
.


History

One of the earliest steps towards ''atomic physics'' was the recognition that matter was composed of ''atoms'', in modern terms the basic unit of a
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
. This theory was developed by
John Dalton John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He introduced the atomic theory into chemistry. He also researched Color blindness, colour blindness; as a result, the umbrella term ...
in the 18th century. At this stage, it wasn't clear what atoms were - although they could be described and classified by their observable properties in bulk; summarized by the developing
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, by John Newlands and Dmitri Mendeleyev around the mid to late 19th century. Later, the connection between atomic physics ''and'' optical physics became apparent, by the discovery of
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
s and attempts to describe the phenomenon - notably by Joseph von Fraunhofer, Fresnel, and others in the 19th century. From that time to the 1920s, physicists were seeking to explain atomic spectra and blackbody radiation. One attempt to explain hydrogen spectral lines was the
Bohr atom model In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
. Experiments including
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
and matter - such as the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
, Compton effect, and spectra of sunlight the due to the unknown element of
Helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, the limitation of the Bohr model to Hydrogen, and numerous other reasons, lead to an entirely new mathematical model of matter and light:
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
.


Classical oscillator model of matter

Early models to explain the origin of the index of refraction treated an
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
in an atomic system classically according to the model of Paul Drude and Hendrik Lorentz. The theory was developed to attempt to provide an origin for the wavelength-dependent refractive index ''n'' of a material. In this model, incident
electromagnetic waves In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ran ...
forced an electron bound to an atom to
oscillate Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulu ...
. The amplitude of the oscillation would then have a relationship to the
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of the incident electromagnetic wave and the resonant frequencies of the oscillator. The superposition of these emitted waves from many oscillators would then lead to a wave which moved more slowly.


Early quantum model of matter and light

Max Planck Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial con ...
derived a formula to describe the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
inside a box when in thermal equilibrium in 1900. His model consisted of a superposition of standing waves. In one dimension, the box has length ''L'', and only sinusoidal waves of
wavenumber In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of ...
: k = \frac can occur in the box, where ''n'' is a positive
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
(mathematically denoted by \scriptstyle n \in \mathbb_1). The equation describing these standing waves is given by: :E=E_0 \sin\left(\fracx\right)\,\!. where ''E''0 is the magnitude of the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
amplitude, and ''E'' is the magnitude of the electric field at position ''x''. From this basic, Planck's law was derived. In 1911,
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
concluded, based on
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
scattering, that an atom has a central pointlike proton. He also thought that an electron would be still attracted to the proton by Coulomb's law, which he had verified still held at small scales. As a result, he believed that electrons revolved around the proton.
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
, in 1913, combined the Rutherford model of the atom with the quantisation ideas of Planck. Only specific and well-defined orbits of the electron could exist, which also do not radiate light. In jumping orbit the electron would emit or absorb light corresponding to the difference in energy of the orbits. His prediction of the energy levels was then consistent with observation. These results, based on a ''discrete'' set of specific standing waves, were inconsistent with the ''continuous'' classical oscillator model. Work by
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
in 1905 on the
photoelectric effect The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
led to the association of a light wave of frequency \nu with a photon of energy h\nu. In 1917 Einstein created an extension to Bohrs model by the introduction of the three processes of stimulated emission,
spontaneous emission Spontaneous emission is the process in which a Quantum mechanics, quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited state, excited energy state to a lower energy state (e.g., its ground state ...
and
absorption (electromagnetic radiation) In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). ...
.


Modern treatments

The largest steps towards the modern treatment was the formulation of quantum mechanics with the matrix mechanics approach by
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
and the discovery of the
Schrödinger equation The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
by
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
. There are a variety of semi-classical treatments within AMO. Which aspects of the problem are treated quantum mechanically and which are treated classically is dependent on the specific problem at hand. The semi-classical approach is ubiquitous in computational work within AMO, largely due to the large decrease in computational cost and complexity associated with it. For matter under the action of a laser, a fully quantum mechanical treatment of the atomic or molecular system is combined with the system being under the action of a classical electromagnetic field. Since the field is treated classically it can not deal with
spontaneous emission Spontaneous emission is the process in which a Quantum mechanics, quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited state, excited energy state to a lower energy state (e.g., its ground state ...
. This semi-classical treatment is valid for most systems, particular those under the action of high intensity laser fields. The distinction between optical physics and quantum optics is the use of semi-classical and fully quantum treatments respectively. Within collision dynamics and using the semi-classical treatment, the internal degrees of freedom may be treated quantum mechanically, whilst the relative motion of the quantum systems under consideration are treated classically. When considering medium to high speed collisions, the nuclei can be treated classically while the electron is treated quantum mechanically. In low speed collisions the approximation fails. Classical Monte-Carlo methods for the dynamics of electrons can be described as semi-classical in that the initial conditions are calculated using a fully quantum treatment, but all further treatment is classical.


Isolated atoms and molecules

Atomic, Molecular and Optical physics frequently considers atoms and molecules in isolation. Atomic models will consist of a single nucleus that may be surrounded by one or more bound electrons, whilst molecular models are typically concerned with molecular hydrogen and its molecular hydrogen ion. It is concerned with processes such as
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
, above threshold ionization and excitation by photons or collisions with atomic particles. While modelling atoms in isolation may not seem realistic, if one considers molecules in a gas or plasma then the time-scales for molecule-molecule interactions are huge in comparison to the atomic and molecular processes that we are concerned with. This means that the individual molecules can be treated as if each were in isolation for the vast majority of the time. By this consideration atomic and molecular physics provides the underlying theory in plasma physics and atmospheric physics even though both deal with huge numbers of molecules.


Electronic configuration

Electrons form notional shells around the nucleus. These are naturally in a ground state but can be excited by the absorption of energy from light (
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s), magnetic fields, or interaction with a colliding particle (typically other electrons). Electrons that populate a shell are said to be in a
bound state A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them. In quantum physics, a bound state is a quantum state of a ...
. The energy necessary to remove an electron from its shell (taking it to infinity) is called the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
. Any quantity of energy absorbed by the electron in excess of this amount is converted to
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
according to the
conservation of energy The law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. In the case of a Closed system#In thermodynamics, closed system, the principle s ...
. The atom is said to have undergone the process of
ionization Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive Electric charge, charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged at ...
. In the event that the electron absorbs a quantity of energy less than the binding energy, it may transition to an
excited state In quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Add ...
or to a virtual state. After a statistically sufficient quantity of time, an electron in an excited state will undergo a transition to a lower state via
spontaneous emission Spontaneous emission is the process in which a Quantum mechanics, quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited state, excited energy state to a lower energy state (e.g., its ground state ...
. The change in energy between the two energy levels must be accounted for (conservation of energy). In a neutral atom, the system will emit a photon of the difference in energy. However, if the lower state is in an inner shell, a phenomenon known as the
Auger effect The Auger effect (; ) or Meitner-Auger effect is a physical phenomenon in which atoms eject electrons. It occurs when an inner-shell vacancy in an atom is filled by an electron, releasing energy that causes the emission of another electron from a ...
may take place where the energy is transferred to another bound electrons causing it to go into the continuum. This allows one to multiply ionize an atom with a single photon. There are strict selection rules as to the electronic configurations that can be reached by excitation by light—however there are no such rules for excitation by collision processes.


See also

* Born–Oppenheimer approximation *
Frequency doubling Second-harmonic generation (SHG), also known as frequency doubling, is the lowest-order wave-wave nonlinear interaction that occurs in various systems, including optical, radio, atmospheric, and magnetohydrodynamic systems. As a prototype behav ...
*
Diffraction Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
* Hyperfine structure *
Interferometry Interferometry is a technique which uses the ''interference (wave propagation), interference'' of Superposition principle, superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important inves ...
* Isomeric shift * Metamaterial cloaking * Molecular energy state * Molecular modeling *
Nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
* Negative index metamaterials *
Nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in Nonlinearity, nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity ...
*
Optical engineering Optical engineering is the field of engineering encompassing the physical phenomena and technologies associated with the generation, transmission, manipulation, detection, and utilization of light. Optical engineers use the science of optics to ...
* Photon polarization *
Quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
*
Quantum optics Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
* Rigid rotor *
Spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
* Superlens * Stationary state * Transition of state


Notes


References

* * * * * * * * * * * * * * * * * * ''Solid State Physics (2nd Edition)'', J.R. Hook, H.E. Hall, Manchester Physics Series, John Wiley & Sons, 2010, * ''Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers'', Y.B. Band, John Wiley & Sons, 2010, * ''The Light Fantastic – Introduction to Classic and Quantum Optics'', I.R. Kenyon, Oxford University Press, 2008, *''Handbook of atomic, molecular, and optical physics'', Editor: Gordon Drake,
Springer Springer or springers may refer to: Publishers * Springer Science+Business Media, aka Springer International Publishing, a worldwide publishing group founded in 1842 in Germany formerly known as Springer-Verlag. ** Springer Nature, a multinationa ...
, Various authors, 1996, *


External links


ScienceDirect - Advances In Atomic, Molecular, and Optical PhysicsJournal of Physics B: Atomic, Molecular and Optical Physics


Institutions


American Physical Society - Division of Atomic, Molecular & Optical Physics

European Physical Society - Atomic, Molecular & Optical Physics Division

National Science Foundation - Atomic, Molecular and Optical Physics

MIT-Harvard Center for Ultracold AtomsStanford QFARM Initiative for Quantum Science & Enginneering

JILA - Atomic and Molecular Physics

Joint Quantum Institute at University of Maryland and NISTORNL Physics DivisionQueen's University Belfast - Center for Theoretical, Atomic, Molecular and Optical Physics

University of California, Berkeley - Atomic, Molecular and Optical Physics
{{Physics-footer