The Oddo–Harkins rule holds that an
element with an
even atomic number is
more abundant than the elements with immediately adjacent
atomic numbers. For example,
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
, with atomic number 6, is more abundant than
boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
(5) and
nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
(7). Generally, the relative abundance of an even atomic numbered element is roughly two orders of magnitude greater than the relative abundances of the immediately adjacent odd atomic numbered elements to either side. This pattern was first reported by
Giuseppe Oddo in 1914 and
William Draper Harkins in 1917.
The Oddo–Harkins rule is true for all elements beginning with carbon produced by
stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
but not true for the lightest elements below carbon produced by
big bang nucleosynthesis
In physical cosmology, Big Bang nucleosynthesis (also known as primordial nucleosynthesis, and abbreviated as BBN) is a model for the production of light nuclei, deuterium, 3He, 4He, 7Li, between 0.01s and 200s in the lifetime of the universe ...
and
cosmic ray spallation
Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly ene ...
.
Definitions

All
atoms
Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
heavier than
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
are formed in stars or supernovae through
nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
, when
gravity
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
,
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
and
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
reach levels high enough to fuse
protons
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
and
neutrons
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the f ...
together. Protons and neutrons form the
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
, which accumulates
electrons
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
to form atoms. The number of protons in the nucleus, called atomic number, uniquely identifies a chemical element.
The rule
The early form of the rule derived from Harkin's 1917 study of meteorites. He reasoned, as did others at the time, that meteorites are more representative of the cosmological abundance of the elements. Harkins observed that elements with even atomic numbers (''Z'') were about 70 times more abundant than those with odd ''Z''. The most common seven elements, making up almost 99% of the material in a meteorite, all had even ''Z''. In addition, he observed that 90% of the material consisted of only 15 different isotopes, with atomic weights in multiples of four, the approximate weight of
alpha particles
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
. Three years earlier, Oddo made a similar observation for elements in the Earth's crust, speculating that elements are condensation products of
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. The nuclear core of helium is the same as an alpha particle.
This early work connecting geochemistry with nuclear physics and cosmology was greatly expanded by the Norwegian group created by
Victor Goldschmidt
Victor Moritz Goldschmidt (27 January 1888 – 20 March 1947) was a Norwegian mineralogist considered (together with Vladimir Vernadsky) to be the founder of modern geochemistry and crystal chemistry, developer of the Goldschmidt Classificatio ...
.
[
]
Relation to stellar nucleosynthesis
The Oddo–Harkins rule for elements from 12C to 56Fe is explained by the alpha process
The alpha process, also known as alpha capture or the alpha ladder, is one of two classes of nuclear fusion reactions by which stars convert helium into heavier elements. The other class is a cycle of reactions called the triple-alpha process, w ...
of stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
. The process involves the fusion of alpha particles (helium-4 nuclei) under high temperature and pressure within the stellar environment. Each step in the alpha process adds two protons (and two neutrons), favoring synthesis of even-numbered elements. Carbon itself is a product of a triple-alpha process
The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.
In stars
Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
from helium, a process that skips Li, Be, and B. These nuclides (and helium-3) are produced by cosmic ray spallation
Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly ene ...
a type of nuclear fission in which cosmic rays impact larger isotopes and fragment them. Spallation does not require high temperature and pressure of the stellar environment but can occur on Earth. Though the lighter products of spallation are relatively rare, the odd-mass-number isotopes in this class occur in greater relative abundance compared to even-number isotopes, in contravention of the Oddo–Harkins rule.
Exceptions to the rule
This postulate, however, does not apply to the universe's most abundant and simplest element: hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, with an atomic number of 1. This may be because, in its ionized form, a hydrogen atom becomes a single proton, of which it is theorized to have been one of the first major conglomerates of quarks
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
during the initial second of the Universe's inflation period, following the Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
. In this period, when inflation of the universe had brought it from an infinitesimal point to about the size of a modern galaxy, temperatures in the particle soup fell from over a trillion kelvin
The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s to several million kelvins.
This period allowed the fusion of single protons and deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
nuclei to form helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
and lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
nuclei but was too short for every H+ ion to be reconstituted into heavier elements. In this case, helium, atomic number 2, remains the even-numbered counterpart to hydrogen. Thus, neutral hydrogen—or hydrogen paired with an electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
, the only stable lepton
In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
—constituted the vast majority of the remaining unannihilated portions of matter following the conclusion of inflation.
Another exception to the rule is beryllium
Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
, which, despite an even atomic number (4), is rarer than adjacent elements (lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
and boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
). This is because most of the universe's lithium, beryllium, and boron are made by cosmic ray spallation
Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly ene ...
, not ordinary stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
, and beryllium has only one stable isotope (even that is a Borromean nucleus near the boundary of stability), causing it to lag in abundance with regard to its neighbors, each of which has two stable isotopes.
Isotopic abundance
The elemental basis of the Oddo–Harkins has direct roots in the isotopic compositions of the elements. While even-atomic-numbered elements are more abundant than odd, the spirit of Oddo–Harkins rule extends to the most abundant isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s as well. Isotopes containing an equal number of protons and neutrons are the most abundant. These include ^_He, ^_C, ^_N, ^_O, ^_Ne, ^_Mg, ^_Si, and ^_S. Seven of the eight are alpha nuclides containing whole multiples of He-4 nuclei (^_N is the exception). Two of the eight (^_He and ^_O) contain magic numbers of either protons or neutrons (2, 8, 20, 28, 50, 82, and 126) and are therefore predicted by the nuclear shell model
In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. The first shell model was proposed by Dmitri Ivanenk ...
to be unusually abundant. The high abundances of the remaining six (^_C, ^_N, ^_Ne, ^_Mg, ^_Si, and ^_S) are not predicted by the shell model. "That nuclei of this type are unusually abundant indicates that the excess stability must have played a part in the process of the creation of elements", stated Maria Goeppert Mayer
Maria Goeppert Mayer (; ; June 28, 1906 – February 20, 1972) was a German-American theoretical physicist who shared the 1963 Nobel Prize in Physics with J. Hans D. Jensen and Eugene Wigner. One half of the prize was awarded jointly to Goeppe ...
in her acceptance lecture for the Nobel Prize in Physics in 1963 for discoveries concerning nuclear shell structure.
The Oddo–Harkins rule may suggest that elements with odd atomic numbers have a single, unpaired proton and may swiftly capture another in order to achieve an even atomic number and proton parity. Protons are paired in elements with even atomic numbers, with each member of the pair balancing the spin of the other, thus enhancing nucleon stability. A challenge to this explanation is posed by ^_N, which is highly abundant in spite of having an unpaired proton. Additionally, even-parity isotopes that have exactly two more neutrons than protons are not particularly abundant despite their even parity. Each of the light elements oxygen, neon, magnesium, silicon, and sulfur, have two isotopes with even isospin (nucleon) parity. As shown in the plot above, the isotope with an ''equal'' number of protons and neutrons is one to two orders of magnitude more abundant than the isotope with even parity but two additional neutrons.
Relationship to fusion
Depending on the mass of a star, the Oddo–Harkins pattern arises from the burning of progressively more massive elements within a collapsing dying star by fusion processes such as the proton–proton chain
The proton–proton chain, also commonly referred to as the chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun, wherea ...
, the CNO cycle
In astrophysics, the carbon–nitrogen–oxygen (CNO) cycle, sometimes called Bethe–Weizsäcker cycle, after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker, is one of the two known sets of fusion reactions by which stars convert h ...
, and the triple-alpha process
The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.
In stars
Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
. The newly formed elements are ejected slowly as stellar wind
A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
or in the explosion of a supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
and eventually join the rest of the galaxy's interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
.
See also
*
*
*
References
{{DEFAULTSORT:Oddo-Harkins rule
Eponymous chemical rules
Nuclear chemistry