NLGN4Y
   HOME

TheInfoList



OR:

Neuroligin (NLGN), a
type I membrane protein A single-pass membrane protein also known as single-spanning protein or bitopic protein is a transmembrane protein that spans the lipid bilayer only once. These proteins may constitute up to 50% of all transmembrane proteins, depending on the orga ...
, is a cell adhesion protein on the
postsynaptic Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous sys ...
membrane that mediates the formation and maintenance of synapses between
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
. Neuroligins act as ligands for β-neurexins, which are cell adhesion proteins located presynaptically. Neuroligin and β-neurexin "shake hands", resulting in the connection between two neurons and the production of a synapse. Neuroligins also affect the properties of neural networks by specifying synaptic functions, and they mediate signalling by recruiting and stabilizing key synaptic components. Neuroligins interact with other postsynaptic proteins to localize
neurotransmitter receptor A neurotransmitter receptor (also known as a neuroreceptor) is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which the ...
s and channels in the
postsynaptic density The postsynaptic density (PSD) is a protein dense ''specialization'' attached to the postsynaptic membrane. PSDs were originally identified by electron microscopy as an electron-dense region at the membrane of a postsynaptic neuron. The PSD is in ...
as the cell matures. Additionally, neuroligins are expressed in human peripheral tissues and have been found to play a role in
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
. In humans, alterations in genes encoding neuroligins are implicated in
autism The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental condition (or conditions) characterized by difficulti ...
and other
cognitive disorders Cognitive disorders (CDs), also known as neurocognitive disorders (NCDs), are a category of mental health disorders that primarily affect cognitive abilities including learning, memory, perception, and problem solving. Neurocognitive disorders i ...
. Antibodies in a mother from previous male pregnancies against neuroligin 4 from the Y chromosome increase the probability of homosexuality in male offspring.


Structure

Neuroligins bind with the aid of Ca2+ to the α-neurexin LNS (laminin, neurexin and sex hormone-binding globulin-like folding units) domains and to the β-neurexin LNS domain which then establishes a heterophilic trans-synaptic recognition code. Through the observation of the crystal structure of neuroligin-1, it was determined that neuroligin-1 forms a
protein dimer In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' ha ...
when two neurexin-1 beta monomers bind to the neuroligin-1's two opposite surfaces. This forms a heterotetramer, which contains an interface for binding Ca2+. The interaction of neuroligin and neurexin to form a heterotetramer is monitored by alternatively spliced sites located near the binding interface for Ca2+ in both the neuroligin-1 and the neurexin-1 beta. Subsequently, the presence of native neuroligin dimers was confirmed in neurons through
biochemical detection Biochemical detection is the science and technology of detecting biochemicals and their concentration where trace analysis is concerned this is usually done by using a quartz crystal microbalance, which measures a mass per unit area by measuring th ...
, which included heterodimers composed of different neuroligin species, increasing the potential heterogeneity of endogenous neuroligin core dimer complexes. The
extracellular domain An ectodomain is the Protein domain, domain of a Cell membrane, membrane protein that extends into the extracellular space (the space outside a cell (biology), cell). Ectodomains are usually the parts of proteins that initiate contact with surfaces ...
of NLGN consists mostly of a region that is homologous to
acetylcholinesterase Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme Enzymes () are proteins that a ...
s, but the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s important for catalysis in AChE are not conserved in NLGN, which lack
esterase An esterase is a hydrolase enzyme that splits esters into an acid and an alcohol in a chemical reaction with water called hydrolysis. A wide range of different esterases exist that differ in their substrate specificity, their protein structure, ...
activity. Furthermore, this AChE homologous region is crucial for the proper function of NLGN.


Genetics

Neuroligins have been identified in both vertebrates and invertebrates, including humans, rodents, chickens, ''Drosophila melanogaster'', ''Caenorhabditis elegans'', honeybees and ''Aplysia''. Three genes for neuroligin expression have been found in mice and rats, while humans express five genes. ''Drosophila'' express four genes, honeybees express five genes, and both ''C. elegans'' and ''Aplysia'' express a single gene for neuroligin. The known neuroligin
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
s in ''Homo sapiens'' include
NLGN1 Neuroligin-1 is a protein that in humans is encoded by the ''NLGN1'' gene. This gene encodes a member of the neuroligin family of neuronal cell surface proteins. Neuroligin-1 acts as splice site-specific ligand for β-neurexins and has been shown ...
,
NLGN2 Neuroligin-2 is a protein that in humans is encoded by the ''NLGN2'' gene. This gene encodes a member of a family of neuronal cell surface proteins. Members of this family may act as splice site-specific ligands for beta-neurexins and may be inv ...
,
NLGN3 Neuroligin-3 is a protein that in humans is encoded by the ''NLGN3'' gene. This gene encodes a member of the neuroligin family of neuronal cell surface proteins. Neuroligins may act as splice site-specific ligands for beta-neurexins and may be i ...
,
NLGN4X Neuroligin-4, X-linked is a protein that in humans is encoded by the ''NLGN4X'' gene. In the human brain, the synaptic protein NLGN4 is primarily expressed in the cerebral cortex. This gene encodes a member of the neuroligin family of neuronal c ...
and
NLGN5 Neuroligin (NLGN), a Transmembrane protein, type I membrane protein, is a Cell adhesion molecule, cell adhesion protein on the Chemical synapse#Structure, postsynaptic membrane that mediates the formation and maintenance of synapses betwee ...
(also known as NLGN4Y). Each gene has been found to have unique influences on synaptic transmission.


Expression

Expression of neuroligins may differ between species. Neuroligin 1 is expressed specifically in the CNS at excitatory synapses. In humans, expression of neuroligin 1 is low before birth and increases between postnatal days 1-8 and remains high through adulthood. This postnatal increase during active synaptogenesis corresponds to increased expression of postsynaptic density protein-95 (PSD-95). Neuroligin 2 is mainly concentrated at inhibitory synapses in the CNS, but in mice and humans it may also be expressed in tissues such as the pancreas, lung, endothelia, uterus and colon. Neuroligin 3 is expressed in CNS neurons, as well as a variety of glial cells in mice and rats and the brain, heart, skeletal muscle, placenta and pancreas in humans. Neuroligin 4X is expressed in the heart, liver, skeletal muscle, pancreas and low levels in the brain. Neuroligin 5 (or 4Y), located on the Y chromosome, is only 19 amino acids different from neuroligin 4X. Neuroligin mRNA are present in human endothelial cells from large blood vessels and in Dorsal Root Ganglions.


Alternative splicing

Alternative splicing Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be ...
, a modification that occurs after transcription of mRNA, regulates neuroligins’ binding selectivity for α- or β-neurexins as well as the function of synapses. Alternative splicing in neuroligins occurs in the main functional domain, the acetylcholinesterase-homologous region. Because neuroligin has two conserved splice sites in this region, sites A and B, up to four different
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isof ...
are possible for each neuroligin gene. Neurexins also undergo alternative splicing, and certain splice variants of neuroligins and neurexins are more selective for one another. Specific pairing of splice variants also affects synaptic function. For example, neuroligins lacking the B splice insert and β-neurexins with the S4 insert promote differentiation of inhibitory, GABAergic synapses. On the other hand, neuroligins with the B insert and β-neurexins lacking the S4 insert promote differentiation of excitatory, glutamatergic synapses. The A insert may promote neuroligin localization and function at inhibitory synapses, but the mechanisms are unknown.


Activity with neurexin

Neurexin and neuroligin work together to gather and maintain the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
components needed to localize synaptic vesicles. Neurexin is necessary for containing the voltage-gated Ca2+ channels that are required for the release of vesicles, while neuroligin binds neurexin in order to localize the necessary neurotransmitter receptors and proteins for postsynaptic specialization. At the postsynaptic site, neuroligins are networked to specialized proteins that stimulate specific neurotransmitter receptors and channels to densely occupy specialized regions of the postsynaptic terminal during the maturation of the synapse. Because all developing synapses contain neurexins and neuroligins, developing cells can make many different connections to other cells.


Synapse formation

Neuroligin is sufficient to form new functional presynaptic terminals in vitro. However, evidence suggests that additional adhesion molecules, such as immunoglobulin-domain and cadherin family proteins, mediate the initial contact between the axons and dendrites for a synapse. Neurexins and neuroligins then reinforce the contact. In addition to the selectivity of splice variants, the levels of neuroligins, neurexins, and other interacting proteins present on the pre- and postsynaptic membranes influence the differentiation and balance of synapses. As synapses form during
synaptogenesis Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenes ...
, they differentiate into one of two categories: excitatory or inhibitory.
Excitatory synapse An excitatory synapse is a synapse in which an action potential in a presynaptic neuron increases the probability of an action potential occurring in a postsynaptic cell. Neurons form networks through which nerve impulses travel, each neuron oft ...
s increase probability of firing an action potential in the postsynaptic neuron and are often
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/ aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonist ...
, or synapses in which the neurotransmitter glutamate is released.
Inhibitory synapses An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential.Purves et al. Neuroscience. 4th ed. Sunderland (MA): Sinauer Associates, Incorporated; 2008. ...
decrease probability of firing an action potential in the postsynaptic neuron and are often
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ...
, in which the neurotransmitter GABA is released. Especially during early development, neurons must receive an appropriate balance of excitatory vs. inhibitory synaptic input, referred to as the E/I ratio. In fact, an imbalance in the E/I ratio is thought to be involved in autistic spectrum disorders. Neuroligin 1 localizes at excitatory synapses, neuroligin 2 at inhibitory synapses and neuroligin 3 at both. Reduction in the levels of neuroligins 1, 2 and 3 results in a strong reduction of inhibitory input but little reduction in excitatory input. In addition, Neuroligins interacts with
PSD-95 PSD-95 (postsynaptic density protein 95) also known as SAP-90 (synapse-associated protein 90) is a protein that in humans is encoded by the ''DLG4'' (discs large homolog 4) gene. PSD-95 is a member of the membrane-associated guanylate kinase (MA ...
, an intracellular protein that anchors synaptic proteins in the post-synaptic density of excitatory synapses, and
gephyrin Gephyrin is a protein that in humans is encoded by the ''GPHN'' gene. This gene encodes a neuronal assembly protein that anchors inhibitory neurotransmitter receptors to the postsynaptic cytoskeleton via high affinity binding to a receptor subu ...
, the respective scaffolding protein of inhibitory post-synapses. In addition, neuroligin 2 and 4 specifically interact with
collybistin Collybistin is a protein identified as a regulator of the localization of gephyrin, inducing the formation of submembrane gephyrin aggregates that accumulate glycine and GABA receptors. In 2000 it was identified as a gephyrin binding partner, and ...
a protein that regulates the localization of gephyrin. The level of PSD-95 appears to influence the balance of excitatory and inhibitory inputs. An increase in the ratio of PSD-95 to neuroligin resulted in an increase in the E/I ratio, and a decrease in the PSD-95/neuroligin ratio had the opposite effect. Also, overexpression of PSD-95 redirects neuroligin-2 from excitatory to inhibitory synapses, strengthening excitatory input and reducing inhibitory input. These interactions of neuroligin, neurexin and interacting proteins such as PSD-95 point to a potential regulatory mechanism that controls development and balance of excitatory and inhibitory synapses, governed by homeostatic feedback mechanisms.


Clinical significance

Neuroligin dysfunction has been implicated in
autism spectrum disorders The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental disorder, neurodevelopmental condition (or conditions) ...
. Different genetic alterations have been detected in neuroligin genes in patients with ASD, including
point mutation A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequences ...
s,
missense mutation In genetics, a missense mutation is a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid. It is a type of nonsynonymous substitution. Substitution of protein from DNA mutations Missense m ...
s and internal deletions. In studies done on family members with X-linked autism, specific mutations of NLGN3 and NLGN4 have been identified. These mutations have been shown to affect how neuroligins function and have been shown to interfere with synaptic transmission. 19 of the 69 known proteins mutated in X-linked autism encode postsynaptic proteins, Neuroligins included. Additionally, maternal antibodies against
Y-chromosome The Y chromosome is one of two sex chromosomes (allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or abse ...
neuroligin NLGN4Y have been implicated in the fetal development of male homosexuality.


NLGN3 mutations

A mutated NLGN3 gene, R451C, has been cloned. The mutant has been shown to cause defective neuroligin trafficking and retention of the mutant protein in the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
. The small amount of mutant protein that reached the cell membrane demonstrated diminished binding activity for neurexin-1, consistent with a loss of function. The mutant gene has been cloned and was introduced into mice, resulting in impaired social interactions, enhanced spatial learning abilities and increased inhibitory synaptic transmission. Deleting NLGN3 did not produce these effects, thus indicating R451C to be a gain-of-function mutation. This supports the claim that increased inhibitory synaptic transmission may contribute to human autism spectrum disorders.


NLGN4 mutations

Mutations in NLGN4 have also been found in persons with X-linked autism. A frame shift mutation 1186T has been found to cause an early stop codon and premature protein truncation. This mutation results in intracellular retention of mutant proteins, possibly causing impaired function of a synaptic cell adhesion molecule, and modifying the binding of the neuroligin protein to its presynaptic partners, neurexins, thus interrupting essential synaptic function. Other mutations of NLGN4 found in relation to autism spectrum disorders include a 2-bp deletion, 1253delAG, in the NLGN4 gene, which causes a frameshift and a premature stop codon. Another mutation is a hemizygous deletion in the NLGN4 gene encompassing exons 4, 5 and 6. The 757-kb deletion was predicted to result in a significantly truncated protein.


See also

*
Neurexin Neurexins (NRXN) are a family of presynaptic cell adhesion proteins that have roles in connecting neurons at the synapse. They are located mostly on the presynaptic membrane and contain a single transmembrane domain. The extracellular domain ...
*
Synaptogenesis Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenes ...
*
Postsynaptic density The postsynaptic density (PSD) is a protein dense ''specialization'' attached to the postsynaptic membrane. PSDs were originally identified by electron microscopy as an electron-dense region at the membrane of a postsynaptic neuron. The PSD is in ...


References

{{reflist, 2 Human proteins Molecular neuroscience Single-pass transmembrane proteins