HOME

TheInfoList



OR:

Nanoionics is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
transport (FIT) in all-solid-state
nanoscale Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
systems. The topics of interest include fundamental properties of oxide
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s at nanometer length scales, and fast-ion conductor ( advanced superionic conductor)/electronic conductor
heterostructure A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
s. Potential applications are in
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
devices (
electrical double layer Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
devices) for conversion and storage of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
, charge and information. The term and conception of nanoionics (as a new branch of science) were first introduced by A.L. Despotuli and V.I. Nikolaichik (Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka) in January 1992. A multidisciplinary scientific and industrial field of
solid state ionics Solid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors (solid electrolytes) and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, gla ...
, dealing with ionic transport phenomena in solids, considers Nanoionics as its new division. Nanoionics tries to describe, for example, diffusion&reactions, in terms that make sense only at a nanoscale, e.g., in terms of non-uniform (at a nanoscale) potential landscape. There are two classes of solid-state ionic nanosystems and two fundamentally different nanoionics: (I) nanosystems based on solids with low ionic conductivity, and (II) nanosystems based on advanced superionic conductors (e.g. alpha– AgI,
rubidium silver iodide Rubidium silver iodide is a ternary inorganic compound with the formula RbAg4I5. Its conductivity involves the movement of silver ions within the crystal lattice. It was discovered by Dr. Boone Owens while searching for chemicals which had the i ...
–family). Nanoionics-I and nanoionics-II differ from each other in the design of interfaces. The role of boundaries in nanoionics-I is the creation of conditions for high concentrations of charged defects (vacancies and interstitials) in a disordered space-charge layer. But in nanoionics-II, it is necessary to conserve the original highly ionic conductive crystal structures of advanced superionic conductors at ordered (lattice-matched) heteroboundaries. Nanoionic-I can significantly enhance (up to ~108 times) the 2D-like ion conductivity in nanostructured materials with structural coherence, but it is remaining ~103 times smaller relatively to 3D ionic conductivity of advanced superionic conductors. The classical theory of diffusion and migration in solids is based on the notion of a diffusion coefficient,
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
and electrochemical potential. This means that accepted is the picture of a hopping ion transport in the potential landscape where all barriers are of the same height (uniform potential relief). Despite the obvious difference of objects of solid state ionics and nanoionics-I, -II, the true new problem of fast-ion transport and charge/
energy storage Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an Accumulator (energy), accumulator or Batte ...
(or transformation) for these objects ( fast-ion conductors) has a special common basis: non-uniform potential landscape on nanoscale (for example) which determines the character of the mobile ion subsystem response to an impulse or harmonic external influence, e.g. a weak influence in Dielectric spectroscopy (impedance spectroscopy).


Characteristics

Being a branch of nanoscience and
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
, nanoionics is unambiguously defined by its own objects (nanostructures with FIT), subject matter (properties, phenomena, effects, mechanisms of processes, and applications connected with FIT at nano-scale), method (interface design in nanosystems of superionic conductors), and the criterion (R/L ~1, where R is the length scale of device structures, and L is the characteristic length on which the properties, characteristics, and other parameters connected with FIT change drastically). The
International Technology Roadmap for Semiconductors The International Technology Roadmap for Semiconductors (ITRS) is a set of documents that was coordinated and organized by Semiconductor Research Corporation and produced by a group of experts in the semiconductor industry. These experts were rep ...
(ITRS) relates nanoionics-based resistive switching memories to the category of "emerging research devices" ("ionic memory"). The area of close intersection of nanoelectronics and nanoionics had been called nanoelionics (1996). Now, the vision of future nanoelectronics constrained solely by fundamental ultimate limits is being formed in advanced research. The ultimate physical limits to computation are very far beyond the currently attained (1010 cm−2, 1010 Hz) region. What kind of logic switches might be used at the near nm- and sub-nm peta-scale integration? The question was the subject matter already in, where the term "nanoelectronics" was not used yet. Quantum mechanics constrains electronic distinguishable configurations by the tunneling effect at tera-scale. To overcome 1012 cm−2 bit density limit, atomic and ion configurations with a characteristic dimension of L <2 nm should be used in the information domain and materials with an effective mass of information carriers m* considerably larger than electronic ones are required: m* =13 me at L =1 nm, m* =53 me (L =0,5 nm) and m* =336 me (L =0,2 nm). Future short-sized devices may be nanoionic, i.e. based on the fast-ion transport at the nanoscale, as it was first stated in.


Examples

The examples of nanoionic devices are all-solid-state
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s with fast-ion transport at the functional heterojunctions ( nanoionic supercapacitors), lithium batteries and fuel cells with nanostructured electrodes, nano-switches with quantized conductivity on the basis of fast-ion conductors (see also
memristors A memristor (; a portmanteau of ''memory resistor'') is a non-linear terminal (electronics), two-terminal electronic component, electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon ...
and
programmable metallization cell The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, a ...
). These are well compatible with sub-voltage and deep-sub-voltage nanoelectronics and could find wide applications, for example in autonomous micro power sources,
RFID Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver, and a transmitter. When tri ...
,
MEMS MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
,
smartdust Smartdust is a system of many tiny microelectromechanical systems (MEMS) such as sensors, robots, or other devices, that can detect, for example, light, temperature, vibration, magnetism, or chemicals. They are usually operated on a computer networ ...
, nanomorphic cell, other micro- and nanosystems, or reconfigurable memory cell arrays. An important case of fast-ionic conduction in solid states is in the surface space-charge layer of ionic crystals. Such conduction was first predicted by
Kurt Lehovec Kurt Lehovec (12 June 1918 – 17 February 2012) was a Czech-American physicist. He one of the pioneers of the integrated circuit. While also pioneering the Solar cell, photo-voltaic effect, light-emitting diodes and History of the battery#Invent ...
. A significant role of boundary conditions with respect to ionic conductivity was first experimentally discovered by C.C. Liang who found an anomalously high conduction in the LiI-Al2O3 two-phase system. Because a space-charge layer with specific properties has nanometer thickness, the effect is directly related to nanoionics (nanoionics-I). The Lehovec effect has become the basis for the creation of a multitude of nanostructured fast-ion conductors which are used in modern portable
lithium batteries Lithium battery may refer to: * Lithium metal battery, a non-rechargeable battery with lithium as an anode ** Lithium–air battery ** Lithium–iron disulfide battery ** Lithium–sulfur battery ** Nickel–lithium battery ** Rechargeable l ...
and
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s. In 2012, a 1D structure-dynamic approach was developed in nanoionics for a detailed description of the space charge formation and relaxation processes in irregular potential relief (direct problem) and interpretation of characteristics of nanosystems with fast-ion transport (inverse problem), as an example, for the description of a collective phenomenon: coupled ion transport and dielectric-polarization processes which lead to A. K. Jonscher's "universal" dynamic response.


See also

*
Programmable metallization cell The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, a ...


References

{{Reflist, 30em Nanoelectronics