NAD Kinase
   HOME

TheInfoList



OR:

NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts
nicotinamide adenine dinucleotide Nicotinamide adenine dinucleotide (NAD) is a Cofactor (biochemistry), coenzyme central to metabolism. Found in all living cell (biology), cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphat ...
(NAD+) into NADP+ through phosphorylating the NAD+
coenzyme A cofactor is a non-protein chemical compound or Metal ions in aqueous solution, metallic ion that is required for an enzyme's role as a catalysis, catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can ...
. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the
pentose phosphate pathway The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt or HMP shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-ph ...
to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
n '' Archaeoglobus fulgidus'' has been determined. In humans, the
genes In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
''NADK'' and ''MNADK'' encode NAD+ kinases localized in cytosol and mitochondria, respectively. Similarly, yeast have both cytosolic and mitochondrial isoforms, and the yeast mitochondrial isoform accepts both NAD+ and NADH as substrates for phosphorylation.


Reaction

The reaction catalyzed by NADK is : ATP + NAD+ \rightleftharpoons ADP + NADP+


Mechanism

NADK phosphorylates NAD+ at the 2’ position of the ribose ring that carries the adenine moiety. It is highly selective for its substrates, NAD and ATP, and does not tolerate modifications either to the phosphoryl acceptor, NAD, or the pyridine moiety of the phosphoryl donor, ATP. NADK also uses metal ions to coordinate the ATP in the active site. In vitro studies with various divalent metal ions have shown that zinc and manganese are preferred over magnesium, while copper and nickel are not accepted by the enzyme at all. A proposed mechanism involves the 2' alcohol oxygen acting as a nucleophile to attack the gamma-phosphoryl of ATP, releasing ADP.


Regulation

NADK is highly regulated by the redox state of the cell. Whereas NAD is predominantly found in its oxidized state NAD+, the phosphorylated NADP is largely present in its reduced form, as NADPH. Thus, NADK can modulate responses to oxidative stress by controlling NADP synthesis. Bacterial NADK is shown to be inhibited allosterically by both NADPH and NADH. NADK is also reportedly stimulated by
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
/
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all Eukaryote, eukaryotic cells. It is an intracellular target of the Second messenger system, sec ...
binding in certain cell types, such as neutrophils. NAD kinases in plants and sea urchin eggs have also been found to bind calmodulin.


Clinical significance

Due to the essential role of NADPH in lipid and DNA biosynthesis and the hyperproliferative nature of most cancers, NADK is an attractive target for cancer therapy. Furthermore, NADPH is required for the antioxidant activities of
thioredoxin reductase Thioredoxin reductases (TR, TrxR) () are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. Bacterial TrxR also catalyzes the reduction ...
and
glutaredoxin Glutaredoxins (also known as Thioltransferase) are small redox enzymes of approximately one hundred amino-acid residues that use glutathione as a cofactor. In humans this oxidation repair enzyme is also known to participate in many cellular functi ...
. Thionicotinamide and other
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
analogs are potential inhibitors of NADK, and studies show that treatment of colon cancer cells with thionicotinamide suppresses the cytosolic NADPH pool to increase oxidative stress and synergizes with chemotherapy. While the role of NADK in increasing the NADPH pool appears to offer protection against
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
, there are also cases where NADK activity appears to potentiate cell death. Genetic studies done in human haploid cell lines indicate that knocking out NADK may protect from certain non-apoptotic stimuli.


See also

*
Oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
*
Electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
*
Metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...


References


Further reading

* * * *


External links


ENZYME entry on EC 2.7.1.23BRENDA entry on EC 2.7.1.23

PDBe-KB
provides an overview of all the structure information available in the PDB for Human NAD kinase {{DEFAULTSORT:Nad+ Kinase EC 2.7.1 Cellular respiration Metabolism