HOME

TheInfoList



OR:

Moisture stress is a form of
abiotic stress Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performan ...
that occurs when the moisture of plant tissues is reduced to suboptimal levels. Water stress occurs in response to atmospheric and soil water availability when the
transpiration Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth a ...
rate exceeds the rate of water uptake by the roots and cells lose
turgor pressure Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibri ...
. Moisture stress is described by two main metrics,
water potential Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...
and
water content Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as ...
. Moisture stress has an effect on
stoma In botany, a stoma (from Greek ''στόμα'', "mouth", plural "stomata"), also called a stomate (plural "stomates"), is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange. The pore is bor ...
tal opening, mainly causing a closure in stomata as to reduce the amount of carbon dioxide assimilation. Closing of the stomata also slows the rate of transpiration, which limits water loss and helps to prevent the
wilting Wilting is the loss of rigidity of non-woody parts of plants. This occurs when the turgor pressure in non- lignified plant cells falls towards zero, as a result of diminished water in the cells. Wilting also serves to reduce water loss, as it ...
effects of moisture stress. This closing can be trigged by the roots sensing dry soil and in response producing the hormone ABA which when transported up the xylem into the leaves will reduce
stomatal conductance Stomatal conductance, usually measured in mmol m−2 s−1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of ...
and wall extensibility of growing cells. This lowers the rates of transpiration, photosynthesis and leaf expansion. ABA also increases the loosening of growing root cell walls and in turn increases root growth in an effort to find water in the soil. Phenotypic response of plants to long-term water stress was measured in corn and showed that plants respond to water stress with both an increase in root growth both laterally and vertically. In all Droughted conditions the corn showed decrease in plant height and yield due to the decrease in water availability. Genes induced during water-stress conditions are thought to function not only in protecting cells from water deficit by the production of important metabolic proteins but also in the regulation of genes for signal transduction in the water-stress response. There are four pathways that have been described that show the plants genetic response to moisture stress; two are ABA dependent while two are ABA independent. They all affect gene expression that increases the plants water stress tolerance. The effects of moisture stress on photosynthesis can depend as much on the velocity and degree of photosynthetic recovery, as it depends on the degree and velocity of photosynthesis decline during water depletion. Plants that are subjected to mild stress can recover in 1–2 days however, plants subjected to severe water stress will only recover 40-60% of its maximum photosynthetic rates the day after re watering and may never reach maximum photosynthetic rates. The recovery from moisture stress starts with an increase in water content in leaves reopening the stomata then the synthesis of photosynthetic proteins.


See also

*
Nonlimiting water range The non-limiting water range (NLWR) represents the range of water content in the soil where limitations to plant growth (such as water potential, air-filled porosity, or soil strength) are minimal. John Letey (1985) from UC Riverside introduced the ...
*
Permanent wilting point Permanent wilting point (PWP) or wilting point (WP) is defined as the minimum amount of water in the soil that the plant requires not to wilt. If the soil water content decreases to this or any lower point a plant wilts and can no longer recover ...
*
Soil plant atmosphere continuum The soil-plant-atmosphere continuum (SPAC) is the pathway for water moving from soil through plants to the atmosphere. Continuum in the description highlights the continuous nature of water connection through the pathway. The low water potential of ...
*
Stoma In botany, a stoma (from Greek ''στόμα'', "mouth", plural "stomata"), also called a stomate (plural "stomates"), is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange. The pore is bor ...
ta


References

{{reflist Agricultural soil science Irrigation Plant physiology