MSH3
   HOME

TheInfoList



OR:

DNA mismatch repair DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of nucleobase, bases that can arise during DNA replication and Genetic recombination, recombination, as well as DNA repair, r ...
protein, MutS Homolog 3 (MSH3) is a human homologue of the bacterial mismatch repair protein
MutS MutS is a mismatch DNA repair protein, originally described in ''Escherichia coli''. Mismatch repair contributes to the overall fidelity of DNA replication and is essential for combating the adverse effects of damage to the genome. It involves th ...
that participates in the mismatch repair (MMR) system. MSH3 typically forms the
heterodimer In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has ...
MutSβ with
MSH2 DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the ''MSH2'' gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes ...
in order to correct long insertion/deletion loops and base-base mispairs in
microsatellites A microsatellite is a tract of repetitive DNA in which certain DNA motifs (ranging in length from one to six or more base pairs) are repeated, typically 5–50 times. Microsatellites occur at thousands of locations within an organism's genome. ...
during DNA synthesis. Deficient capacity for MMR is found in approximately 15% of
colorectal cancer Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the colon or rectum (parts of the large intestine). Signs and symptoms may include blood in the stool, a change in bowel m ...
s, and somatic mutations in the MSH3 gene can be found in nearly 50% of MMR-deficient colorectal cancers.


Gene and expression

In humans, the encoding gene for MSH3 is found on chromosome 5 at location 5q11-q12 upstream of the
dihydrofolate reductase Dihydrofolate reductase, or DHFR, is an enzyme that reduces dihydrofolic acid to tetrahydrofolic acid, using NADPH as an electron donor, which can be converted to the kinds of tetrahydrofolate cofactors used in 1-carbon transfer chemistry. In ...
(DHFR) gene. MSH3 is encoded by 222,341 base pairs and creates a protein consisting of 1137 amino acids. MSH3 is typically expressed at low levels in several transformed cell lines—including
HeLa HeLa (; also Hela or hela) is an immortalized cell line used in scientific research. It is the oldest and most commonly used human cell line. The line is derived from cervical cancer cells taken on February 8, 1951, named after Henrietta La ...
,
K562 K562 cells were the first human immortalised myelogenous leukemia cell line to be established. K562 cells are of the erythroleukemia type, and the cell line is derived from a 53-year-old female chronic myelogenous leukemia patient in blast cris ...
,
HL-60 The HL-60 cell line is a human leukemia cell line that has been used for laboratory research on blood cell formation and physiology. HL-60 proliferates continuously in suspension culture in nutrient and antibiotic chemicals. The doubling time is ...
, and CEM—as well as a large range of normal tissues including spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, skeletal muscle kidney, and pancreas. Although expression levels of MSH3 vary slightly from tissue to tissue, its widespread low-level expression indicates that it is a “housekeeping” gene commonly expressed in all cells. Over-expression of MSH3 decreased capacity for MMR. When MSH3 is over expressed, drastic changes occur in the relative levels of formation of MutSβ at the expense of MutSα. MutSα is responsible for base-base mispairs and short insertion/deletion loops, while MutSβ repairs long insertion/deletion loops in DNA. A drastic shift in the relative levels of these protein complexes can lead to diminished capacity for MMR. In the case of MSH3 overexpression, MSH2 preferentially heterodimerizes with MSH3 leading to high levels of MutSβ and degradation of the partnerless
MSH6 MSH6 or mutS homolog 6 is a gene that codes for DNA mismatch repair protein Msh6 in the budding yeast ''Saccharomyces cerevisiae''. It is the homologue of the human "G/T binding protein," (GTBP) also called p160 or hMSH6 (human MSH6). The MSH6 prot ...
protein which normally complexes with MSH2 to form MutSα.


Interactions

MSH3 has been shown to interact with MSH2,
PCNA Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, whe ...
, and
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a h ...
. These interactions form protein complexes that are typically involved in tumor suppression and DNA repair activities. The primary interaction of MSH3 involves forming the MutSβ complex with MSH2. MutSβ forms as a heterodimer of MSH2 and MSH3 with two primary interaction regions: an amino-terminal region and a
carboxy-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
region. The N-terminal region of MSH3 (amino acids 126-250) contact the N-terminal region of MSH2 aa 378-625. The C-terminal regions connect at aa 1050-1128 of MSH3 and aa 875-934 of MSH2. The binding regions on MSH2 are identical when binding to either MSH3 or MSH6.
Adenine Adenine () ( symbol A or Ade) is a nucleobase (a purine derivative). It is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The three others are guanine, cytosine and thymine. Its derivati ...
nucleotide binding regions in MSH3 and MSH2 are not contained in either of the interaction regions involved in dimerization, allowing MutSβ to bind to DNA and perform MMR. Proliferating cell nuclear antigen (PCNA) is a protein involved in post-replication MMR. It has been shown that PCNA binds to the MutSβ heterodimer via a binding motif in the N-terminal domain of MSH3. Bound PCNA then localizes the MutSβ complex to replication foci, indicating that PCNA assists in initiating repair by guiding MutSβ and other repair proteins to free termini in recently replicated DNA.


Function

The primary function of MSH3 is to maintain the stability of the genome and enact
tumor suppression A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or red ...
by forming the heterodimer MutSβ to correct long insertion/deletion loops and base-base mispairs. In the case of long insertion/deletion loops, DNA is severely bent and downstream basepairs can become unpaired and exposed. MutSβ recognizes insertion/deletion loops of 1-15 nucleotides; binding to insertion/deletion loops is achieved by inserting the mismatch-binding domain of MSH3 and part of the mismatch-binding domain of MSH2 into the groove formed by the extreme bend in DNA formed by the insertion/deletion loop.


Role in Cancer

The most significant role of MSH3 in cancer is the suppression of tumors by repair of somatic mutations in DNA that occur as the result of base-base mispairs and insertion/deletion loops. Both loss of expression and over expression of MSH3 can lead to
carcinogenic A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis (the formation of cancer). This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substan ...
effects. Over-expression of MSH3 can lead to drastic changes in the relative e levels of MutSα and MutSβ. Normally, MutSβ is expressed at relatively low levels throughout all cells while MutSα is present at high levels. While both proteins have redundant function in base-base repairs, MutSα typically effects base-base mispair repairs and also performs repairs on the more common short inertion/deletion loops. When MSH3 is heavily overexpressed, it acts as a sequester for MSH2 and the relative levels of MutSβ and MutSα shift dramatically as unpaired MSH6 proteins degrade and MutSα becomes depleted. MutSβ can compensate somewhat for loss of base-base mispair correction functions, but is not suited for repairing many short, 1-2 base pair insertion/deletion loops. This leads to a heightened rate of microsatellite instabilities and increased rates of somatic mutations. This effect is directly related to human cancer in the form of drug resistance. One of the common resistance responses to
methotrexate Methotrexate (MTX), formerly known as amethopterin, is a chemotherapy agent and immune-system suppressant. It is used to treat cancer, autoimmune diseases, and ectopic pregnancies. Types of cancers it is used for include breast cancer, leuke ...
, a drug commonly used to treat childhood
acute lymphocytic leukemia Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. Symptoms may include feeling tired, pale skin color, fever, easy bleeding or bruisin ...
and a variety of other tumors, is amplification of the DHFR gene. DHFR amplification leads to overexpression of MSH3 and has been tied drug-resistant recurrence in cancer. In contrast, loss of MSH3 can lead to mismatch repair deficiency and genetic instability which have been identified as particularly common carcinogenic effects in human colorectal cancer. Mutations causing MSH3 knockdown can lead to diminished capacity for cells to repair long insertion/deletion loops causing microsatellite instabilities (MSI) in the genome and allowing an increase in the rates of somatic mutation. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) are a type of MSI where loci containing AAAG or ATAG tetranucleotide repeats are particularly unstable. EMAST phenotypes are particularly common, with nearly 60% of sporadic colorectal cancers displaying high levels of EMAST linked to a high-rate of MSH3 deficient cells in tumors.


References


Further reading

* * * * * * * * * * * * * * * * * * * {{refend