Mycelial Mat
   HOME

TheInfoList



OR:

Mycelium (: mycelia) is a root-like structure of a
fungus A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
consisting of a mass of branching, thread-like
hypha A hypha (; ) is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium. Structure A hypha consists of one o ...
e. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on
soil Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, water, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from ''soil'' by re ...
and many other substrates. A typical single
spore In biology, a spore is a unit of sexual reproduction, sexual (in fungi) or asexual reproduction that may be adapted for biological dispersal, dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores fo ...
germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as
mushroom A mushroom or toadstool is the fleshy, spore-bearing Sporocarp (fungi), fruiting body of a fungus, typically produced above ground on soil or another food source. ''Toadstool'' generally refers to a poisonous mushroom. The standard for the n ...
s. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in '' Armillaria''. Through the mycelium, a fungus absorbs
nutrient A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
s from its environment. It does this in a two-stage process. First, the hyphae secrete
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s onto or into the food source, which break down biological polymers into smaller units such as
monomers A monomer ( ; ''wikt:mono-, mono-'', "one" + ''wikt:-mer, -mer'', "part") is a molecule that can chemical reaction, react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called ...
. These monomers are then absorbed into the mycelium by facilitated diffusion and
active transport In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellula ...
. Mycelia are vital in terrestrial and aquatic
ecosystem An ecosystem (or ecological system) is a system formed by Organism, organisms in interaction with their Biophysical environment, environment. The Biotic material, biotic and abiotic components are linked together through nutrient cycles and en ...
s for their role in the
decomposition Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is ess ...
of plant material. They contribute to the organic fraction of soil, and their growth releases
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
back into the atmosphere (see
carbon cycle The carbon cycle is a part of the biogeochemical cycle where carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycl ...
). Ectomycorrhizal extramatrical mycelium, as well as the mycelium of arbuscular mycorrhizal fungi, increase the efficiency of water and nutrient absorption of most plants and confers resistance to some plant pathogens. Mycelium is an important food source for many soil invertebrates. They are vital to
agriculture Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products. Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created ...
and are important to almost all species of
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s, many species with the
fungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
. Mycelium is a primary factor in some plants' health,
nutrient A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
intake and growth, with mycelium being a major factor to plant fitness. Networks of mycelia can transport water and spikes of electrical potential. Sclerotia are compact or hard masses of mycelium.


Uses


Agriculture

One of the primary roles of fungi in an ecosystem is to decompose organic compounds.
Petroleum Petroleum, also known as crude oil or simply oil, is a naturally occurring, yellowish-black liquid chemical mixture found in geological formations, consisting mainly of hydrocarbons. The term ''petroleum'' refers both to naturally occurring un ...
products and some
pesticide Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others (see table). The most common of these are herbicides, which account for approximately 50% of all p ...
s (typical soil contaminants) are organic molecules (i.e., they are built on a carbon structure), and thereby show a potential carbon source for fungi. Hence, fungi have the potential to eradicate such pollutants from their environment unless the chemicals prove toxic to the fungus. This biological degradation is a process known as mycoremediation. Mycelial mats have been suggested as having potential as biological filters, removing chemicals and microorganisms from soil and water. The use of fungal mycelium to accomplish this has been termed
mycofiltration Mycoremediation (from ancient Greek (), meaning "fungus", and the suffix , in Latin meaning 'restoring balance') is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the Natural environment, environment. ...
. Knowledge of the relationship between
mycorrhiza A mycorrhiza (; , mycorrhiza, or mycorrhizas) is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, the plant root system and its surroundings. Mycorrhizae play ...
l fungi and plants suggests new ways to improve
crop yield In agriculture, the yield is a measurement of the amount of a crop grown, or product such as wool, meat or milk produced, per unit area of land. The seed ratio is another way of calculating yields. Innovations, such as the use of fertilizer, the ...
s. When spread on logging roads, mycelium can act as a binder, holding disturbed new soil in place thus preventing washouts until
woody plants A woody plant is a plant that produces wood as its structural tissue and thus has a hard stem. In cold climates, woody plants further survive winter or dry season above ground, as opposed to herbaceous plants that die back to the ground until s ...
can establish roots. Fungi are essential for converting
biomass Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how ...
into
compost Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by Decomposition, decomposing plant and food waste, recycling organic materials, and man ...
, as they decompose feedstock components such as
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
, which many other composting microorganisms cannot. Turning a backyard compost pile will commonly expose visible networks of mycelia that have formed on the decaying organic material within. Compost is an essential soil amendment and
fertilizer A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Man ...
for
organic farming Organic farming, also known as organic agriculture or ecological farming or biological farming,Labelling, article 30 o''Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2024 on organic production and labelling of ...
and
gardening Gardening is the process of growing plants for their vegetables, fruits, flowers, herbs, and appearances within a designated space. Gardens fulfill a wide assortment of purposes, notably the production of Aesthetics, aesthetically pleasing area ...
. Composting can divert a substantial fraction of
municipal solid waste Municipal solid waste (MSW), commonly known as trash or garbage in the American English, United States and rubbish in British English, Britain, is a List of waste types, waste type consisting of everyday items that are discarded by the public. ...
from
landfill A landfill is a site for the disposal of waste materials. It is the oldest and most common form of waste disposal, although the systematic burial of waste with daily, intermediate and final covers only began in the 1940s. In the past, waste was ...
s.


Commercial

Alternatives to polystyrene and plastic packaging can be produced by growing mycelium in agricultural waste. Mycelium has also been used as a material in furniture, and
artificial leather Artificial leather, also called synthetic leather, is a material intended to substitute for leather in upholstery, clothing, footwear, and other uses where a leather-like finish is desired but the actual material is cost prohibitive or unsuitab ...
. One of the main commercial uses of mycelium is its use to create artificial leather. Animal leather contributes to a significant environmental footprint, as livestock farming is associated with deforestation, greenhouse gas emissions, and grazing. In addition, the production of synthetic leathers from
polyvinyl chloride Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: vinyl or polyvinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of ...
and
polyurethane Polyurethane (; often abbreviated PUR and PU) is a class of polymers composed of organic chemistry, organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane term ...
require the use of hazardous chemicals and fossil fuels, and they are not biodegradable (like plastic). Fungal-based artificial leather is cheaper to produce, has less of an environmental footprint, and is biodegradable. It costs between 18 and 28 cents to produce a square meter of raw mycelium, while it costs between $5.81 and $6.24 to produce a square meter of raw animal hide. Fungal growth is carbon neutral and pure mycelium is 94% biodegradable. However, the use of polymeric
materials A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their ge ...
such as
polyester Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include some natura ...
or
polylactic acid Polylactic acid, also known as poly(lactic acid) or polylactide (PLA), is a plastic material. As a thermoplastic polyester (or polyhydroxyalkanoate) it has the backbone formula or . PLA is formally obtained by condensation of lactic acid with ...
to improve artificial leather’s properties can negatively affect the biodegradability of the material. To create leather, fungal mycelium is grown either using liquid-state or solid-state fermentation. In liquid-state fermentation, companies typically use laboratory media or agricultural byproducts to grow fungal biomass. The fungal biomass is then separated into fibers and processed using fiber suspension, filtration, pressing, and drying. These techniques are also commonly utilized in traditional papermaking processes. In solid-state fermentation, mycelium is grown on forestry bioproducts, like sawdust, in an environment with high carbon dioxide concentrations and controlled humidity and temperature. The mycelium mat formed on top of the particle bed is dehydrated, chemically treated, and then compressed to a desired thickness and engraved with a pattern.


Construction material

Mycelium is a strong candidate for sustainable construction primarily due to its lightweight biodegradable structure and its capacity to be grown from waste sources. In addition to this, mycelium has a relatively high strength-to-weight ratio and a much lower embodied energy compared to traditional building
materials A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their ge ...
. Because mycelium takes the form of any mold it's grown in, it can also be advantageous for customization purposes, especially if it's employed as an architectural or aesthetic feature. Current research has also indicated that mycelium does not release toxic resins in the event of a fire because it has a charring effect similar to mass timber. Mycelium plays an interesting role in acoustic insulation, boasting of an absorbance of 70–75% for frequencies of 1500 Hz or less.


Strengths and weaknesses

Mycelium bio-composites have shown strong potential for structural applications, with much higher strength-to-weight ratios than that of conventional materials due primarily to its low density. Compared to conventional building materials, mycelium also has a number of desirable properties that make it an attractive alternative. For example, it has low
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
and can provide high acoustic insulation. It is biodegradable, has much lower embodied energy, and can serve as a carbon sink, which makes mycelium bio-composites a possible solution to the emissions, energy, and waste associated with building construction. While mycelium proposes interesting implications as a structural material, there are several significant disadvantages that make it difficult to be practically implemented in large-scale projects. For one, mycelium does not have particularly high compressive strength on its own, ranging from 0.1-0.2 MPa. This is in stark comparison to traditional concrete, which typically has a
compressive strength In mechanics, compressive strength (or compression strength) is the capacity of a material or Structural system, structure to withstand Structural load, loads tending to reduce size (Compression (physics), compression). It is opposed to ''tensil ...
of 17-28 MPa. Even more, because mycelium is considered a living material, it holds specific requirements that make it susceptible to environmental conditions. For instance, it requires a constant source of air in order to stay alive, needs a relatively humid habitat to grow, and cannot be exposed to large amounts of water for fear of contamination and decay.


Mechanical properties

Three separate fungi species (''Colorius versicolor'', ''Trametes ochracea'', and '' Ganoderma sessile'') were mixed independently with 2 substrates (apple and vine) and tested under separate incubation conditions in order to quantify certain mechanical properties of mycelium. In order to do this, samples were grown in molds, incubated, and dried over the course of 12 days. Samples were tested for water absorption usin
ASTM C272
guidelines and compared against an
EPS An extended play (EP) is a Sound recording and reproduction, musical recording that contains more tracks than a Single (music), single but fewer than an album. Contemporary EPs generally contain up to eight tracks and have a playing time of 1 ...
material. Tiles of uniform size were cut from the fabricated mold and put under an Instron 3345 machine going at 1 mm/min, up until 20% deformation. Throughout a 4 stage process, the impact of various substrate and fungal mixes was investigated along with properties of mycelium such as density, water absorption, and compressive strength. Samples were separated into two separate incubation methods and inspected for differences in color, texture, and growth. For the same fungi within each incubation method, minimal differences were recorded. However, across disparate substrate mixtures within the same fungi, colorization and external growth varied between the test samples. While loss of organic matter was calculated, no uniform correlation was found between substrate used and chemical properties of the material. For each of the substrate-fungi mixtures, average densities ranged from 174.1 kg/m3 to 244.9 kg/m3, with the Ganoderma sessile fungi and apple substrate combination being the most dense. Compression tests revealed the Ganoderma sessile fungi and vine substrate to have the highest strength of the samples tested, but no numerical value was provided. For reference, surrounding literature has provided a ballpark estimate of 1-72 kPa. Beyond this, mycelium has a thermal conductivity of 0.05–0.07W/m·K which is less than that of typical concrete.


Construction

The construction of mycelium structures is primarily categorized into three approaches. These include growing blocks in molds, growing in place monolithic structures, and bio-welded units. The first approach cultivates mycelium and its substrate in forms, after which it is dried in ovens and then transported and assembled on site. The second approach uses existing formwork and adapts cast-in-place concrete techniques to grow monolithic mycelium structures in place. The third approach is a hybrid of the previous two referred to as myco-welding, where individual pre-grown units are grown together into a larger monolithic structure. Studies using grow-in-place methods and myco-welding have explored how to cultivate mycelium and re-use formwork in construction and investigated post-tensioning and friction connections. Research in fabrication has revealed some common challenges faced in construction of mycelium structures, mostly related to the growth of the fungi. It can be difficult to cultivate living material into formwork and it is susceptible to contamination if not properly sterilized. The fungi needs to be kept refrigerated to prevent hardening and properly manage growth and substrate consumption. Additionally, the thickness of fungal growth is limited by the presence of oxygen; if there is no oxygen, the center of the growth can die or be contaminated.


Environmental impact

Researchers have performed
life-cycle assessment Life cycle assessment (LCA), also known as life cycle analysis, is a methodology for assessing the impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufact ...
s to evaluate the environmental impact of mycelium bio-composites. Life cycle analysis showed the viability of mycelium as a
carbon sink A carbon sink is a natural or artificial carbon sequestration process that "removes a  greenhouse gas, an aerosol or a precursor of a greenhouse gas from the atmosphere". These sinks form an important part of the natural carbon cycle. An overar ...
material and as a sustainable alternative to conventional building materials. Use of mycelium as a natural adhesive material may provide environmental benefits, as the fungal-based composites that mycelium is used to create are low cost, low emission, and sustainable. These composites also have a wide range of applications and uses, many of which are in industries responsible for significant environmental pollution, like construction and packaging. Modern construction and packaging materials are industrially fabricated, non-recyclable, and pollutive: wood products lead to severe deforestation and weather fluctuation; cement is nonbiodegradable and causes high emissions both in production and demolition. Mycelium appears to be cheaper and more sustainable than its counterparts. Mycelium’s adhesive properties are largely responsible for its diverse array of applications, as it allows them to bind certain substances together. These properties are products of their biological processes, as they secrete corrosive
enzymes An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as pro ...
that allow them to degrade and colonize organic substrates. During degradation, mycelium develops a dense network of thin strands that fuse together within the organic substrate, creating solid material that can hold multiple substrates together. This self-assembly property of mycelium is quite unique, and allows mycelium to grow on a wide range of organic material, including organic waste.


Potential ecological role

Plants appear to communicate within an ecosystem using mycelium, the fungal network produced by mycorrhiza fungi. Mycelial networks constitute 20-30% of soil biomass, though traditional biomass measures fail to detect them. Some 83% of plants appear to exhibit mutualistic association with mycelium as an extension of their root systems, with varying levels of reliance. By some estimates, mycelial networks receive well over 10% of the photosynthesis output of their host plants. This mutualism is initiated by hyphal connections in which mycelial strands infect and attach themselves to plant hyphae, penetrating the cell wall but not entering through the membrane into the plant cytoplasm. Mycelium interacts with the cell at the periarbuscular membrane, which behaves as a sort of exchange medium for nutrients and can produce electrical gradients allowing for electrophysiological signals to be sent and received. In modeling studies, different fungi supply different levels of nutrients and growth-promoting materials, with plants tending to root towards (and thus being infected by) fungi supplying most mineral phosphorus and nitrogen (both essential for plant growth). Mycorrhizal mycelial associations may intensify competition between individuals of the same species, while alleviating competition between species, via the promotion of inferior competitors, thus promoting plant diversity within its network. In doing so, mycorrhizal fungi promote community ecology, with an added complexity of niche differentiation of different networks and types of mycorrhizal fungi that root at different depths, disperse different organic compounds and nutrients, and have unique interactions with specific species of plants.


Mycelial biology and memory

Several studies have documented the memory capacity of mycelial networks and their adaptability to specific environmental conditions. Mycelia have been specialized for different functions in various climates and develop symbiotic or pathogenic relationships with other organisms, such as the human pathogen '' Candida auris'', which has developed a unique approach of evading detection by human neutrophils through adaptive selection–a process of fungal learning and memory. Additionally, these functions can change based on the scale of the mycelia and nature of the symbiotic relationship; commensal and mutual relationships between fungi and plants form through a separate process known as mycorrhizal association, which are called mycorrhiza. Additionally, hyphal organization into mycelial networks can be deterministic for a variety of functions including biomass retention, water recycling, expansion of future hyphae on a resource efficient approach towards desired nutrient gradients, and the subsequent distribution of these resources across the hyphal network. On a macroscopic scale, many mycelia operate with a sort of hierarchy having a “trunk” or main mycelium, with smaller “branches” branching off.  Some saprotrophic basidiomycetes are able to remember past decisions about directional nutrition gradients and will build future mycelium in that direction.


Mycelial memory and intelligence

Current research on collective mycelial intelligence is limited, and while many studies have observed memory and the exchange of electric charge across mycelial networks, this is insufficient evidence to make conclusions about how sensory data is processed in these networks. However, some examples of increased thermal resistance in filamentous fungi suggest a power-law relationship for memory and exposure to a stimulus. Mycelia have also demonstrated the ability to edit their genetic structures within a lifetime due to antibiotic or other extracellular stressors, which can cause rapid acquisition of resistance genes, like those in '' C. auris''. Additionally, plasmodial slime molds demonstrate a similar method of information sharing, as both mycelia and slime molds make use of cAMP molecules for aggregation and signaling.


Sclerotium

Sclerotium A sclerotium (; : sclerotia () is a compact mass of hardened fungal mycelium containing food reserves. One role of sclerotia is to survive environmental extremes. In some higher fungi such as ergot, sclerotia become detached and remain dormant u ...
is a compact mass of hardened mycelium. For many years, sclerotia were mistaken for individual organisms and described as separate species. However, in the mid 19th century, it was proven that sclerotia was simply a stage in the life cycle of many fungi. Sclerotia are composed of thick, dense shells with dark cells. They are rich in
hyphae A hypha (; ) is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium. Structure A hypha consists of one o ...
emergency supplies, such as oil, and they contain small amounts of water. They can survive in dry environments for many years without losing the ability to grow. The size of sclerotia can range from less than a millimeter to tens of centimeters in diameter.


See also

* Mycelium-based materials – Composite mycelium applications * *


References

Footnotes Citations


External links


Mycelium
2012, Australian National Botanic Gardens and Australian National Herbarium, Canberra {{Fungus structure Fungal morphology and anatomy