HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Mordell–Weil theorem states that for an
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
A over a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
K, the group A(K) of ''K''-rational points of A is a
finitely-generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n ...
, called the Mordell–Weil group. The case with A an
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
E and K the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s is Mordell's theorem, answering a question apparently posed by
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
around 1901; it was proved by Louis Mordell in 1922. It is a foundational theorem of
Diophantine geometry In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study ...
and the
arithmetic of abelian varieties In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has b ...
.


History

The ''tangent-chord process'' (one form of addition theorem on a
cubic curve In mathematics, a cubic plane curve is a plane algebraic curve defined by a cubic equation : applied to homogeneous coordinates for the projective plane; or the inhomogeneous version for the affine space determined by setting in such an eq ...
) had been known as far back as the seventeenth century. The process of
infinite descent In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold f ...
of
Fermat Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
was well known, but Mordell succeeded in establishing the finiteness of the
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
E(\mathbb)/2E(\mathbb) which forms a major step in the proof. Certainly the finiteness of this group is a
necessary condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
for E(\mathbb) to be finitely generated; and it shows that the
rank A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy ...
is finite. This turns out to be the essential difficulty. It can be proved by direct analysis of the doubling of a point on ''E''. Some years later
André Weil André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is du ...
took up the subject, producing the generalisation to Jacobians of higher genus curves over arbitrary number fields in his doctoral dissertation published in 1928. More abstract methods were required, to carry out a proof with the same basic structure. The second half of the proof needs some type of
height function A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebr ...
, in terms of which to bound the 'size' of points of A(K). Some measure of the co-ordinates will do; heights are logarithmic, so that (roughly speaking) it is a question of how many digits are required to write down a set of
homogeneous coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. ...
. For an abelian variety, there is no ''a priori'' preferred representation, though, as a
projective variety In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, th ...
. Both halves of the proof have been improved significantly by subsequent technical advances: in
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated with a field extension ''L''/''K'' acts in a na ...
as applied to descent, and in the study of the best height functions (which are
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong t ...
s).


Further results

The theorem leaves a number of questions still unanswered: *Calculation of the rank. This is still a demanding computational problem, and does not always have effective solutions. *Meaning of the rank: see
Birch and Swinnerton-Dyer conjecture In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory ...
. *Possible torsion subgroups: Barry Mazur proved in 1978 that the Mordell–Weil group can have only finitely many torsion subgroups. This is the elliptic curve case of the torsion conjecture. *For a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
C in its
Jacobian variety In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelia ...
as A, can the intersection of C with A(K) be infinite? Because of
Faltings's theorem Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field \mathbb of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and know ...
, this is false unless C = A. *In the same context, can C contain infinitely many torsion points of A? Because of the Manin–Mumford conjecture, proved by Michel Raynaud, this is false unless it is the elliptic curve case.


See also

*
Arithmetic geometry In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties. ...
* Mordell–Weil group


References


Further reading

* * * {{DEFAULTSORT:Mordell-Weil Theorem Diophantine geometry Elliptic curves Abelian varieties Theorems in algebraic number theory