HOME

TheInfoList



OR:

Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g.
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
) it needs to live and reproduce. Microbes use many different types of
metabolic Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the ...
strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's
ecological niche In ecology, a niche is the match of a species to a specific environmental condition. Three variants of ecological niche are described by It describes how an organism or population responds to the distribution of Resource (biology), resources an ...
, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.


Types

All microbial metabolisms can be arranged according to three principles: 1. How the organism obtains carbon for synthesizing cell mass:Morris, J. et al. (2019). "Biology: How Life Works", 3rd edition, W. H. Freeman. *
autotroph An autotroph is an organism that can convert Abiotic component, abiotic sources of energy into energy stored in organic compounds, which can be used by Heterotroph, other organisms. Autotrophs produce complex organic compounds (such as carbohy ...
ic – carbon is obtained from
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
() *
heterotroph A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
ic – carbon is obtained from
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s * mixotrophic – carbon is obtained from both organic compounds and by fixing carbon dioxide 2. How the organism obtains reducing equivalents (hydrogen atoms or electrons) used either in energy conservation or in biosynthetic reactions: * lithotrophic – reducing equivalents are obtained from
inorganic compound An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''. Inorgan ...
s * organotrophic – reducing equivalents are obtained from organic compounds 3. How the organism obtains energy for living and growing: * phototrophic – energy is obtained from lightTang, K.-H., Tang, Y. J., Blankenship, R. E. (2011). "Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications" ''Frontiers in Microbiology'' 2: Atc. 165. http://dx.doi.org/10.3389/micb.2011.00165 *
chemotroph A chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic ( chemoorganotrophs) or inorganic ( chemolithotrophs). The chemotroph designation is in contrast to phot ...
ic – energy is obtained from external
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s In practice, these terms are almost freely combined. Typical examples are as follows: * chemolithoautotrophs obtain energy from the oxidation of inorganic compounds and carbon from the fixation of carbon dioxide. Examples: Nitrifying bacteria, sulfur-oxidizing bacteria, iron-oxidizing bacteria, Knallgas-bacteria * photolithoautotrophs obtain energy from light and carbon from the fixation of carbon dioxide, using reducing equivalents from inorganic compounds. Examples:
Cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
(water () as reducing equivalent = hydrogen donor), Chlorobiaceae, Chromatiaceae (hydrogen sulfide () as hydrogen donor), '' Chloroflexus'' (hydrogen () as reducing equivalent donor) * chemolithoheterotrophs obtain energy from the oxidation of inorganic compounds, but cannot fix carbon dioxide (). Examples: some '' Thiobacilus'', some '' Beggiatoa'', some '' Nitrobacter'' spp., '' Wolinella'' (with as reducing equivalent donor), some Knallgas-bacteria, some
sulfate-reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
* chemoorganoheterotrophs obtain energy, carbon, and hydrogen for biosynthetic reactions from organic compounds. Examples: most bacteria, e. g. ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'', ''
Bacillus ''Bacillus'', from Latin "bacillus", meaning "little staff, wand", is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum ''Bacillota'', with 266 named species. The term is also used to describe the shape (rod) of other so-sh ...
'' spp., '' Actinomycetota'' * photoorganoheterotrophs obtain energy from light, carbon and reducing equivalents for biosynthetic reactions from organic compounds. Some species are strictly heterotrophic, many others can also fix carbon dioxide and are mixotrophic. Examples: '' Rhodobacter'', '' Rhodopseudomonas'', '' Rhodospirillum'', '' Rhodomicrobium'', '' Rhodocyclus'', '' Heliobacterium'', '' Chloroflexus'' (alternatively to photolithoautotrophy with hydrogen)


Heterotrophic microbial metabolism

Some microbes are heterotrophic (more precisely chemoorganoheterotrophic), using organic compounds as both carbon and energy sources. Heterotrophic microbes live off of nutrients that they scavenge from living hosts (as commensals or
parasite Parasitism is a Symbiosis, close relationship between species, where one organism, the parasite, lives (at least some of the time) on or inside another organism, the Host (biology), host, causing it some harm, and is Adaptation, adapted str ...
s) or find in dead organic matter of all kind ( saprophages). Microbial metabolism is the main contribution for the bodily decay of all organisms after death. Many
eukaryotic The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
microorganisms are heterotrophic by
predation Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
or
parasitism Parasitism is a close relationship between species, where one organism, the parasite, lives (at least some of the time) on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The en ...
, properties also found in some bacteria such as '' Bdellovibrio'' (an intracellular parasite of other bacteria, causing death of its victims) and Myxobacteria such as '' Myxococcus'' (predators of other bacteria which are killed and used by cooperating swarms of many single cells of Myxobacteria). Most
pathogen In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
ic bacteria can be viewed as heterotrophic parasites of humans or the other eukaryotic species they affect. Heterotrophic microbes are extremely abundant in nature and are responsible for the breakdown of large organic
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s such as
cellulose Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
,
chitin Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
or
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidit ...
which are generally indigestible to larger animals. Generally, the oxidative breakdown of large polymers to carbon dioxide ( mineralization) requires several different organisms, with one breaking down the polymer into its constituent monomers, one able to use the monomers and excreting simpler waste compounds as by-products, and one able to use the excreted wastes. There are many variations on this theme, as different organisms are able to degrade different polymers and secrete different waste products. Some organisms are even able to degrade more recalcitrant compounds such as petroleum compounds or pesticides, making them useful in
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in mycoremediation, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, wate ...
. Biochemically, prokaryotic heterotrophic metabolism is much more versatile than that of eukaryotic organisms, although many prokaryotes share the most basic metabolic models with eukaryotes, e. g. using
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
(also called EMP pathway) for sugar metabolism and the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
to degrade
acetate An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
, producing energy in the form of ATP and reducing power in the form of NADH or quinols. These basic pathways are well conserved because they are also involved in biosynthesis of many conserved building blocks needed for cell growth (sometimes in reverse direction). However, many
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
and
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
utilize alternative metabolic pathways other than glycolysis and the citric acid cycle. A well-studied example is sugar metabolism via the keto-deoxy-phosphogluconate pathway (also called ED pathway) in ''
Pseudomonas ''Pseudomonas'' is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 348 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a ...
''. Moreover, there is a third alternative sugar-catabolic pathway used by some bacteria, the pentose phosphate pathway. The metabolic diversity and ability of prokaryotes to use a large variety of organic compounds arises from the much deeper evolutionary history and diversity of prokaryotes, as compared to eukaryotes. It is also noteworthy that the
mitochondrion A mitochondrion () is an organelle found in the cell (biology), cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosine tri ...
, the small membrane-bound intracellular organelle that is the site of eukaryotic oxygen-using energy metabolism, arose from the
endosymbiosis An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
of a bacterium related to obligate intracellular '' Rickettsia'', and also to plant-associated '' Rhizobium'' or '' Agrobacterium''. Therefore, it is not surprising that all mitrochondriate eukaryotes share metabolic properties with these
Pseudomonadota Pseudomonadota (synonym "Proteobacteria") is a major phylum of gram-negative bacteria. Currently, they are considered the predominant phylum within the domain of bacteria. They are naturally found as pathogenic and free-living (non- parasitic) ...
. Most microbes respire (use an
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
), although
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
is not the only terminal electron acceptor that may be used. As discussed below, the use of terminal electron acceptors other than oxygen has important biogeochemical consequences.


Fermentation

Fermentation is a specific type of heterotrophic metabolism that uses organic carbon instead of oxygen as a terminal electron acceptor. This means that these organisms do not use an electron transport chain to oxidize NADH to and therefore must have an alternative method of using this reducing power and maintaining a supply of for the proper functioning of normal metabolic pathways (e.g. glycolysis). As oxygen is not required, fermentative organisms are anaerobic. Many organisms can use fermentation under anaerobic conditions and
aerobic respiration Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellu ...
when oxygen is present. These organisms are facultative anaerobes. To avoid the overproduction of NADH, obligately fermentative organisms usually do not have a complete citric acid cycle. Instead of using an ATP synthase as in respiration, ATP in fermentative organisms is produced by
substrate-level phosphorylation Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the rea ...
where a
phosphate Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
group is transferred from a high-energy organic compound to ADP to form ATP. As a result of the need to produce high energy phosphate-containing organic compounds (generally in the form of
Coenzyme A Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the Fatty acid metabolism#Synthesis, synthesis and Fatty acid metabolism#.CE.B2-Oxidation, oxidation of fatty acids, and the oxidation of pyruvic acid, pyruvate in the citric ac ...
-esters) fermentative organisms use NADH and other cofactors to produce many different reduced metabolic by-products, often including
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
gas (). These reduced organic compounds are generally small organic acids and
alcohol Alcohol may refer to: Common uses * Alcohol (chemistry), a class of compounds * Ethanol, one of several alcohols, commonly known as alcohol in everyday life ** Alcohol (drug), intoxicant found in alcoholic beverages ** Alcoholic beverage, an alco ...
s derived from
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic ...
, the end product of
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
. Examples include
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
,
acetate An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
, lactate, and butyrate. Fermentative organisms are very important industrially and are used to make many different types of food products. The different metabolic end products produced by each specific bacterial species are responsible for the different tastes and properties of each food. Not all fermentative organisms use substrate-level
phosphorylation In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writ ...
. Instead, some organisms are able to couple the oxidation of low-energy organic compounds directly to the formation of a proton motive force or sodium-motive force and therefore ATP synthesis. Examples of these unusual forms of fermentation include succinate fermentation by '' Propionigenium modestum'' and oxalate fermentation by '' Oxalobacter formigenes''. These reactions are extremely low-energy yielding. Humans and other higher animals also use fermentation to produce lactate from excess NADH, although this is not the major form of metabolism as it is in fermentative microorganisms.


Special metabolic properties


Methylotrophy

Methylotrophy refers to the ability of an organism to use C1-compounds as energy sources. These compounds include
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical compound and the simplest aliphatic Alcohol (chemistry), alcohol, with the chemical formula (a methyl group linked to a hydroxyl group, often ab ...
, methyl amines, formaldehyde, and formate. Several other less common substrates may also be used for metabolism, all of which lack carbon-carbon bonds. Examples of methylotrophs include the bacteria '' Methylomonas'' and '' Methylobacter''. Methanotrophs are a specific type of methylotroph that are also able to use
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
() as a carbon source by oxidizing it sequentially to methanol (), formaldehyde (), formate (), and carbon dioxide initially using the enzyme methane monooxygenase. As oxygen is required for this process, all (conventional) methanotrophs are obligate aerobes. Reducing power in the form of quinones and NADH is produced during these oxidations to produce a proton motive force and therefore ATP generation. Methylotrophs and methanotrophs are not considered as autotrophic, because they are able to incorporate some of the oxidized methane (or other metabolites) into cellular carbon before it is completely oxidized to (at the level of formaldehyde), using either the serine pathway ('' Methylosinus'', '' Methylocystis'') or the ribulose monophosphate pathway ('' Methylococcus''), depending on the species of methylotroph. In addition to aerobic methylotrophy, methane can also be oxidized anaerobically. This occurs by a consortium of sulfate-reducing bacteria and relatives of
methanogen Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism. Methane production, or methanogenesis, is the only biochemical pathway for Adenosine triphosphate, ATP generation in methanogens. A ...
ic
Archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
working syntrophically (see below). Little is currently known about the biochemistry and ecology of this process. Methanogenesis is the biological production of methane. It is carried out by methanogens, strictly anaerobic Archaea such as '' Methanococcus'', ''
Methanocaldococcus ''Methanocaldococcus'' formerly known as ''Methanococcus'' is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic ''M. thermolithotrophicus'' and the hyperthermophilic ''M. jannaschii''. The latter was dis ...
'', '' Methanobacterium'', '' Methanothermus'', ''
Methanosarcina ''Methanosarcina'' is a genus of euryarchaeote archaea that produce methane. These single-celled organisms are known as anaerobic methanogens that produce methane using all three metabolic pathways for methanogenesis. They live in diverse e ...
'', ''
Methanosaeta ''Methanosaeta'' is a genus of archaeans in the family Methanosaetaceae. Like other species in this family, those of ''Methanosaeta'' metabolize acetate as their sole source of energy. The genus contains two species, ''Methanosaeta concilii'', w ...
'' and ''
Methanopyrus ''Methanopyrus'' is a genus of methanogen, with a single described species, ''Methanopyrus kandleri''. It is a rod-shaped hyperthermophile, discovered on the wall of a black smoker from the Gulf of California at a depth of 2,000 m, at temper ...
''. The biochemistry of methanogenesis is unique in nature in its use of a number of unusual cofactors to sequentially reduce methanogenic substrates to methane, such as coenzyme M and methanofuran. These cofactors are responsible (among other things) for the establishment of a
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
gradient across the outer membrane thereby driving ATP synthesis. Several types of methanogenesis occur, differing in the starting compounds oxidized. Some methanogens reduce carbon dioxide () to methane () using electrons (most often) from hydrogen gas () chemolithoautotrophically. These methanogens can often be found in environments containing fermentative organisms. The tight association of methanogens and fermentative bacteria can be considered to be syntrophic (see below) because the methanogens, which rely on the fermentors for hydrogen, relieve feedback inhibition of the fermentors by the build-up of excess hydrogen that would otherwise inhibit their growth. This type of syntrophic relationship is specifically known as interspecies hydrogen transfer. A second group of methanogens use methanol () as a substrate for methanogenesis. These are chemoorganotrophic, but still autotrophic in using as only carbon source. The biochemistry of this process is quite different from that of the carbon dioxide-reducing methanogens. Lastly, a third group of methanogens produce both methane and carbon dioxide from
acetate An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
() with the acetate being split between the two carbons. These acetate-cleaving organisms are the only chemoorganoheterotrophic methanogens. All autotrophic methanogens use a variation of the reductive acetyl-CoA pathway to fix and obtain cellular carbon.


Syntrophy

Syntrophy, in the context of microbial metabolism, refers to the pairing of multiple species to achieve a
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
that, on its own, would be energetically unfavorable. The best studied example of this process is the oxidation of fermentative end products (such as acetate,
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
and butyrate) by organisms such as '' Syntrophomonas''. Alone, the oxidation of butyrate to acetate and hydrogen gas is energetically unfavorable. However, when a hydrogenotrophic (hydrogen-using) methanogen is present the use of the hydrogen gas will significantly lower the concentration of hydrogen (down to 10−5 atm) and thereby shift the equilibrium of the butyrate oxidation reaction under standard conditions (ΔGº') to non-standard conditions (ΔG'). Because the concentration of one product is lowered, the reaction is "pulled" towards the products and shifted towards net energetically favorable conditions (for butyrate oxidation: ΔGº'= +48.2 kJ/mol, but ΔG' = -8.9 kJ/mol at 10−5 atm hydrogen and even lower if also the initially produced acetate is further metabolized by methanogens). Conversely, the available free energy from methanogenesis is lowered from ΔGº'= -131 kJ/mol under standard conditions to ΔG' = -17 kJ/mol at 10−5 atm hydrogen. This is an example of intraspecies hydrogen transfer. In this way, low energy-yielding carbon sources can be used by a consortium of organisms to achieve further degradation and eventual mineralization of these compounds. These reactions help prevent the excess sequestration of carbon over geologic time scales, releasing it back to the biosphere in usable forms such as methane and .


Aerobic respiration

Aerobic metabolism occurs in Bacteria, Archaea and Eucarya. Although most bacterial species are anaerobic, many are facultative or obligate aerobes. The majority of archaeal species live in extreme environments that are often highly anaerobic. There are, however, several cases of aerobic archaea such as Haiobacterium,
Thermoplasma ''Thermoplasma'' is a genus of archaeans.See the NCBIbr>webpage on Thermoplasma Data extracted from the It belongs to the class Thermoplasmata, which thrive in acidic and high-temperature environments. ''Thermoplasma'' are facultative anaer ...
,
Sulfolobus ''Sulfolobus'' is a genus of microorganism in the family Sulfolobaceae. It belongs to the kingdom Thermoproteati of the Archaea domain. ''Sulfolobus'' species grow in volcanic springs with optimal growth occurring at pH 2–3 and temperatu ...
and Yymbaculum. Most of the known eukaryotes carry out aerobic metabolism within their
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
which is an organelle that had a symbiogenesis origin from prokarya . All
aerobic organism An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic ...
s contain oxidases of the cytochrome oxidase super family, but some members of the Pseudomonadota ('' E. coli'' and '' Acetobacter'') can also use an unrelated cytochrome bd complex as a respiratory terminal oxidase.


Anaerobic respiration

While
aerobic organism An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic ...
s during respiration use oxygen as a terminal electron acceptor,
anaerobic organism An anaerobic organism or anaerobe is any organism that does not require oxygen, molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an o ...
s use other electron acceptors. These inorganic compounds release less energy in
cellular respiration Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cell ...
, which leads to slower growth rates than aerobes. Many facultative anaerobes can use either oxygen or alternative terminal electron acceptors for respiration depending on the environmental conditions. Most respiring anaerobes are heterotrophs, although some do live autotrophically. All of the processes described below are dissimilative, meaning that they are used during energy production and not to provide nutrients for the cell (assimilative). Assimilative pathways for many forms of anaerobic respiration are also known.


Denitrification – nitrate as electron acceptor

Denitrification is the utilization of
nitrate Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
() as a terminal electron acceptor. It is a widespread process that is used by many members of the Pseudomonadota. Many facultative anaerobes use denitrification because nitrate, like oxygen, has a high reduction potential. Many denitrifying bacteria can also use ferric
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
() and some organic
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents. The electron accepting power of an electron acceptor is measured by its redox potential. In the ...
s. Denitrification involves the stepwise reduction of nitrate to nitrite (),
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
(NO),
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or factitious air, among others, is a chemical compound, an Nitrogen oxide, oxide of nitrogen with the Chemical formula, formula . At room te ...
(), and dinitrogen () by the enzymes nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively. Protons are transported across the membrane by the initial NADH reductase, quinones, and nitrous oxide reductase to produce the electrochemical gradient critical for respiration. Some organisms (e.g. '' E. coli'') only produce nitrate reductase and therefore can accomplish only the first reduction leading to the accumulation of nitrite. Others (e.g. '' Paracoccus denitrificans'' or '' Pseudomonas stutzeri'') reduce nitrate completely. Complete denitrification is an environmentally significant process because some intermediates of denitrification (nitric oxide and nitrous oxide) are important
greenhouse gas Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
es that react with
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
and
ozone Ozone () (or trioxygen) is an Inorganic compound, inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , break ...
to produce nitric acid, a component of
acid rain Acid rain is rain or any other form of Precipitation (meteorology), precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists b ...
. Denitrification is also important in biological
wastewater Wastewater (or waste water) is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of do ...
treatment where it is used to reduce the amount of nitrogen released into the environment thereby reducing
eutrophication Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of organisms that may deplete the oxygen in the water; ie. the process of too many plants growing on the s ...
. Denitrification can be determined via a nitrate reductase test.


Sulfate reduction – sulfate as electron acceptor

Dissimilatory sulfate reduction is a relatively energetically poor process used by many Gram-negative bacteria found within the Thermodesulfobacteriota, Gram-positive organisms relating to '' Desulfotomaculum'' or the archaeon '' Archaeoglobus''.
Hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
() is produced as a metabolic end product. For sulfate reduction electron donors and energy are needed.


Electron donors

Many sulfate reducers are organotrophic, using carbon compounds such as lactate and pyruvate (among many others) as electron donors, while others are lithotrophic, using hydrogen gas () as an electron donor. Some unusual autotrophic sulfate-reducing bacteria (e.g. '' Desulfotignum phosphitoxidans'') can use phosphite () as an electron donor whereas others (e.g. '' Desulfovibrio sulfodismutans'', '' Desulfocapsa thiozymogenes'', '' Desulfocapsa sulfoexigens'') are capable of sulfur disproportionation (splitting one compound into two different compounds, in this case an electron donor and an electron acceptor) using elemental sulfur (S0), sulfite (), and thiosulfate () to produce both hydrogen sulfide () and sulfate ().


Energy for reduction

All sulfate-reducing organisms are strict anaerobes. Because sulfate is energetically stable, before it can be metabolized it must first be activated by adenylation to form APS (adenosine 5'-phosphosulfate) thereby consuming ATP. The APS is then reduced by the enzyme APS reductase to form sulfite () and AMP. In organisms that use carbon compounds as electron donors, the ATP consumed is accounted for by fermentation of the carbon substrate. The hydrogen produced during fermentation is actually what drives respiration during sulfate reduction.


Acetogenesis – carbon dioxide as electron acceptor

Acetogenesis is a type of microbial metabolism that uses hydrogen () as an electron donor and carbon dioxide () as an electron acceptor to produce acetate, the same electron donors and acceptors used in methanogenesis (see above). Bacteria that can autotrophically synthesize acetate are called homoacetogens. Carbon dioxide reduction in all homoacetogens occurs by the acetyl-CoA pathway. This pathway is also used for carbon fixation by autotrophic sulfate-reducing bacteria and hydrogenotrophic methanogens. Often homoacetogens can also be fermentative, using the hydrogen and carbon dioxide produced as a result of fermentation to produce acetate, which is secreted as an end product.


Other inorganic electron acceptors

Ferric iron () is a widespread anaerobic terminal electron acceptor both for autotrophic and heterotrophic organisms. Electron flow in these organisms is similar to those in electron transport, ending in oxygen or nitrate, except that in ferric iron-reducing organisms the final enzyme in this system is a ferric iron reductase. Model organisms include '' Shewanella putrefaciens'' and '' Geobacter metallireducens''. Since some ferric iron-reducing bacteria (e.g. ''G. metallireducens'') can use toxic
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic; their odor is usually fain ...
s such as
toluene Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon with the chemical formula , often abbreviated as , where Ph stands for the phenyl group. It is a colorless, water Water is an inorganic compound with the c ...
as a carbon source, there is significant interest in using these organisms as bioremediation agents in ferric iron-rich contaminated
aquifer An aquifer is an underground layer of water-bearing material, consisting of permeability (Earth sciences), permeable or fractured rock, or of unconsolidated materials (gravel, sand, or silt). Aquifers vary greatly in their characteristics. The s ...
s. Although ferric iron is the most prevalent inorganic electron acceptor, a number of organisms (including the iron-reducing bacteria mentioned above) can use other
inorganic An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds⁠that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemistry''. Inor ...
ions in anaerobic respiration. While these processes may often be less significant ecologically, they are of considerable interest for bioremediation, especially when heavy metals or
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s are used as electron acceptors. Examples include: * Manganic ion () reduction to manganous ion () * Selenate () reduction to selenite () and selenite reduction to inorganic
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
(Se0) * Arsenate () reduction to arsenite () * Uranyl ion () reduction to uranium dioxide ()


Organic terminal electron acceptors

A number of organisms, instead of using inorganic compounds as terminal electron acceptors, are able to use organic compounds to accept electrons from respiration. Examples include: * Fumarate reduction to succinate * Trimethylamine ''N''-oxide (TMAO) reduction to
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a trimethylated derivative of ammonia. TMA is widely used in industry. At higher concentrations it has an ammonia-like odor, and can cause necrosis of mucous membranes ...
(TMA) *
Dimethyl sulfoxide Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula . This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is ...
(DMSO) reduction to dimethyl sulfide (DMS) * Reductive dechlorination TMAO is a chemical commonly produced by
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
, and when reduced to TMA produces a strong odor. DMSO is a common marine and freshwater chemical which is also odiferous when reduced to DMS. Reductive dechlorination is the process by which chlorinated organic compounds are reduced to form their non-chlorinated endproducts. As chlorinated organic compounds are often important (and difficult to degrade) environmental pollutants, reductive dechlorination is an important process in bioremediation.


Chemolithotrophy

Chemolithotrophy is a type of metabolism where energy is obtained from the oxidation of inorganic compounds. Most chemolithotrophic organisms are also autotrophic. There are two major objectives to chemolithotrophy: the generation of energy (ATP) and the generation of reducing power (NADH).


Hydrogen oxidation

Many organisms are capable of using hydrogen () as a source of energy. While several mechanisms of anaerobic hydrogen
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
have been mentioned previously (e.g. sulfate reducing- and acetogenic bacteria), the chemical energy of hydrogen can be used in the aerobic Knallgas reaction: :2 H2 + O2 → 2 H2O + energy In these organisms, hydrogen is oxidized by a membrane-bound
hydrogenase A hydrogenase is an enzyme that Catalysis, catalyses the reversible Redox, oxidation of molecular hydrogen (H2), as shown below: Hydrogen oxidation () is coupled to the reduction of electron acceptors such as oxygen, nitrate, Ferric, ferric i ...
causing proton pumping via electron transfer to various quinones and cytochromes. In many organisms, a second cytoplasmic hydrogenase is used to generate reducing power in the form of NADH, which is subsequently used to fix carbon dioxide via the Calvin cycle. Hydrogen-oxidizing organisms, such as ''Cupriavidus necator'' (formerly ''
Ralstonia eutropha ''Cupriavidus necator'' is a Gram-negative soil bacterium of the class Betaproteobacteria. Taxonomy ''Cupriavidus necator'' has gone through a series of name changes. In the first half of the 20th century, many micro-organisms were isolated ...
''), often inhabit oxic-anoxic interfaces in nature to take advantage of the hydrogen produced by anaerobic fermentative organisms while still maintaining a supply of oxygen.


Sulfur oxidation

Sulfur oxidation involves the oxidation of reduced sulfur compounds (such as sulfide ), inorganic sulfur (S), and thiosulfate () to form
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
(). A classic example of a sulfur-oxidizing bacterium is '' Beggiatoa'', a microbe originally described by
Sergei Winogradsky Sergei Nikolaevich Winogradsky (; ; , Kyiv – 24 February 1953, Brie-Comte-Robert), also published under the name Sergius Winogradsky, was a Ukrainian and Russian microbiologist, ecologist and soil science, soil scientist who pioneered the Biog ...
, one of the founders of environmental microbiology. Another example is '' Paracoccus''. Generally, the oxidation of sulfide occurs in stages, with inorganic sulfur being stored either inside or outside of the cell until needed. This two step process occurs because energetically sulfide is a better electron donor than inorganic sulfur or thiosulfate, allowing for a greater number of protons to be translocated across the membrane. Sulfur-oxidizing organisms generate reducing power for carbon dioxide fixation via the Calvin cycle using reverse electron flow, an energy-requiring process that pushes the electrons against their thermodynamic gradient to produce NADH. Biochemically, reduced sulfur compounds are converted to sulfite () and subsequently converted to sulfate () by the enzyme sulfite oxidase. Some organisms, however, accomplish the same oxidation using a reversal of the APS reductase system used by sulfate-reducing bacteria (see above). In all cases the energy liberated is transferred to the electron transport chain for ATP and NADH production. In addition to aerobic sulfur oxidation, some organisms (e.g. '' Thiobacillus denitrificans'') use nitrate () as a terminal electron acceptor and therefore grow anaerobically.


Ferrous iron () oxidation

Ferrous iron is a soluble form of iron that is stable at extremely low pHs or under anaerobic conditions. Under aerobic, moderate pH conditions ferrous iron is oxidized spontaneously to the ferric () form and is hydrolyzed abiotically to insoluble ferric hydroxide (). There are three distinct types of ferrous iron-oxidizing microbes. The first are
acidophile Acidophiles or acidophilic organisms are those that thrive under highly acidic conditions (usually at pH 5.0 or below). These organisms can be found in different branches of the Tree of life (biology), tree of life, including Archaea, Bacteria,Bec ...
s, such as the bacteria '' Acidithiobacillus ferrooxidans'' and '' Leptospirillum ferrooxidans'', as well as the archaeon ''
Ferroplasma ''Ferroplasma'' is a genus of Archaea that belong to the family Ferroplasmaceae. Members of the ''Ferroplasma'' are typically acidophilic, pleomorphic, irregularly shaped cocci. The archaean family Ferroplasmaceae was first described in the earl ...
''. These microbes oxidize iron in environments that have a very low pH and are important in
acid mine drainage Acid mine drainage, acid and metalliferous drainage (AMD), or acid rock drainage (ARD) is the outflow of acidic water from metal mines and coal mines. Acid rock drainage occurs naturally within some environments as part of the rock weatherin ...
. The second type of microbes oxidize ferrous iron at near-neutral pH. These micro-organisms (for example '' Gallionella ferruginea'', '' Leptothrix ochracea'', or '' Mariprofundus ferrooxydans'') live at the oxic-anoxic interfaces and are microaerophiles. The third type of iron-oxidizing microbes are anaerobic photosynthetic bacteria such as Rhodopseudomonas, which use ferrous iron to produce NADH for autotrophic carbon dioxide fixation. Biochemically, aerobic iron oxidation is a very energetically poor process which therefore requires large amounts of iron to be oxidized by the enzyme rusticyanin to facilitate the formation of proton motive force. Like sulfur oxidation, reverse electron flow must be used to form the NADH used for carbon dioxide fixation via the Calvin cycle.


Nitrification

Nitrification is the process by which
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
() is converted to nitrate (). Nitrification is actually the net result of two distinct processes: oxidation of ammonia to nitrite () by nitrosifying bacteria (e.g. '' Nitrosomonas'') and oxidation of nitrite to nitrate by the nitrite-oxidizing bacteria (e.g. '' Nitrobacter''). Both of these processes are extremely energetically poor leading to very slow growth rates for both types of organisms. Biochemically, ammonia oxidation occurs by the stepwise oxidation of ammonia to hydroxylamine () by the enzyme ammonia monooxygenase in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
, followed by the oxidation of hydroxylamine to nitrite by the enzyme hydroxylamine oxidoreductase in the periplasm. Electron and proton cycling are very complex but as a net result only one proton is translocated across the membrane per molecule of ammonia oxidized. Nitrite oxidation is much simpler, with nitrite being oxidized by the enzyme nitrite oxidoreductase coupled to proton translocation by a very short electron transport chain, again leading to very low growth rates for these organisms. Oxygen is required in both ammonia and nitrite oxidation, meaning that both nitrosifying and nitrite-oxidizing bacteria are aerobes. As in sulfur and iron oxidation, NADH for carbon dioxide fixation using the Calvin cycle is generated by reverse electron flow, thereby placing a further metabolic burden on an already energy-poor process. In 2015, two groups independently showed the microbial genus '' Nitrospira'' is capable of complete nitrification ( Comammox).


Anammox

Anammox stands for anaerobic ammonia oxidation and the organisms responsible were relatively recently discovered, in the late 1990s. This form of metabolism occurs in members of the Planctomycetota (e.g. "''Candidatus'' Brocadia anammoxidans") and involves the coupling of ammonia oxidation to nitrite reduction. As oxygen is not required for this process, these organisms are strict anaerobes.
Hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
( – rocket fuel) is produced as an intermediate during anammox metabolism. To deal with the high toxicity of hydrazine, anammox bacteria contain a hydrazine-containing intracellular organelle called the anammoxasome, surrounded by highly compact (and unusual) ladderane lipid membrane. These lipids are unique in nature, as is the use of hydrazine as a metabolic intermediate. Anammox organisms are autotrophs although the mechanism for carbon dioxide fixation is unclear. Because of this property, these organisms could be used to remove nitrogen in
industrial wastewater treatment Industrial wastewater treatment describes the processes used for Wastewater treatment, treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reus ...
processes. Anammox has also been shown to have widespread occurrence in anaerobic aquatic systems and has been speculated to account for approximately 50% of nitrogen gas production in the ocean.


Manganese oxidation

In July 2020 researchers report the discovery of chemolithoautotrophic bacterial culture that feeds on the metal
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
after performing unrelated experiments and named its bacterial species '' Candidatus Manganitrophus noduliformans'' and ''Ramlibacter lithotrophicus''.


Phototrophy

Many microbes (phototrophs) are capable of using light as a source of energy to produce ATP and
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s such as
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s,
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s, and proteins. Of these, algae are particularly significant because they are oxygenic, using water as an electron donor for electron transfer during photosynthesis. Phototrophic bacteria are found in the phyla "
Cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
", Chlorobiota,
Pseudomonadota Pseudomonadota (synonym "Proteobacteria") is a major phylum of gram-negative bacteria. Currently, they are considered the predominant phylum within the domain of bacteria. They are naturally found as pathogenic and free-living (non- parasitic) ...
, Chloroflexota, and Bacillota. Along with plants these microbes are responsible for all biological generation of oxygen gas on Earth. Because chloroplasts were derived from a lineage of the Cyanobacteria, the general principles of metabolism in these endosymbionts can also be applied to chloroplasts. In addition to oxygenic photosynthesis, many bacteria can also photosynthesize anaerobically, typically using sulfide () as an electron donor to produce sulfate. Inorganic sulfur (), thiosulfate () and ferrous iron () can also be used by some organisms. Phylogenetically, all oxygenic photosynthetic bacteria are Cyanobacteria, while Anoxygenic photosynthesis, anoxygenic photosynthetic bacteria belong to the purple bacteria (Pseudomonadota), green sulfur bacteria (e.g., ''Chlorobium''), green non-sulfur bacteria (e.g., '' Chloroflexus''), or the heliobacteria (Low %G+C Gram positives). In addition to these organisms, some microbes (e.g. the Archaeon ''Halobacterium'' or the bacterium ''Roseobacter'', among others) can utilize light to produce energy using the enzyme bacteriorhodopsin, a light-driven proton pump. However, there are no known Archaea that carry out photosynthesis. As befits the large diversity of photosynthetic bacteria, there are many different mechanisms by which light is converted into energy for metabolism. All photosynthetic organisms locate their photosynthetic reaction centers within a membrane, which may be invaginations of the cytoplasmic membrane (Pseudomonadota), thylakoid membranes ("Cyanobacteria"), specialized antenna structures called chlorosomes (Green sulfur and non-sulfur bacteria), or the cytoplasmic membrane itself (heliobacteria). Different photosynthetic bacteria also contain different photosynthetic pigments, such as chlorophylls and carotenoids, allowing them to take advantage of different portions of the electromagnetic spectrum and thereby inhabit different ecological niche, niches. Some groups of organisms contain more specialized light-harvesting structures (e.g. phycobilisomes in Cyanobacteria and chlorosomes in Green sulfur and non-sulfur bacteria), allowing for increased efficiency in light utilization. Biochemically, anoxygenic photosynthesis is very different from oxygenic photosynthesis. Cyanobacteria (and by extension, chloroplasts) use the Z scheme of electron flow in which electrons eventually are used to form NADH. Two different reaction centers (photosystems) are used and proton motive force is generated both by using cyclic electron flow and the quinone pool. In anoxygenic photosynthetic bacteria, electron flow is cyclic, with all electrons used in photosynthesis eventually being transferred back to the single reaction center. A proton motive force is generated using only the quinone pool. In heliobacteria, Green sulfur, and Green non-sulfur bacteria, NADH is formed using the protein ferredoxin, an energetically favorable reaction. In purple bacteria, NADH is formed by reverse electron flow due to the lower chemical potential of this reaction center. In all cases, however, a proton motive force is generated and used to drive ATP production via an ATPase. Most photosynthetic microbes are autotrophic, fixing carbon dioxide via the Calvin cycle. Some photosynthetic bacteria (e.g. ''Chloroflexus'') are photoheterotrophs, meaning that they use organic carbon compounds as a carbon source for growth. Some photosynthetic organisms also fix nitrogen (see below).


Nitrogen fixation

Nitrogen is an element required for growth by all biological systems. While extremely common (80% by volume) in the atmosphere, dinitrogen gas () is generally biologically inaccessible due to its high activation energy. Throughout all of nature, only specialized bacteria and Archaea are capable of nitrogen fixation, converting dinitrogen gas into ammonia (), which is easily assimilated by all organisms. These prokaryotes, therefore, are very important ecologically and are often essential for the survival of entire ecosystems. This is especially true in the ocean, where nitrogen-fixing cyanobacteria are often the only sources of fixed nitrogen, and in soils, where specialized symbioses exist between legumes and their nitrogen-fixing partners to provide the nitrogen needed by these plants for growth. Nitrogen fixation can be found distributed throughout nearly all bacterial lineages and physiological classes but is not a universal property. Because the enzyme nitrogenase, responsible for nitrogen fixation, is very sensitive to oxygen which will inhibit it irreversibly, all nitrogen-fixing organisms must possess some mechanism to keep the concentration of oxygen low. Examples include: * heterocyst formation (cyanobacteria e.g. ''Anabaena'') where one cell does not photosynthesize but instead fixes nitrogen for its neighbors which in turn provide it with energy * root nodule symbioses (e.g. '' Rhizobium'') with plants that supply oxygen to the bacteria bound to molecules of leghaemoglobin * anaerobic lifestyle (e.g. ''Clostridium pasteurianum'') * very fast metabolism (e.g. ''Azotobacter vinelandii'') The production and activity of nitrogenases is very highly regulated, both because nitrogen fixation is an extremely energetically expensive process (16–24 ATP are used per fixed) and due to the extreme sensitivity of the nitrogenase to oxygen.


See also

* Lipophilic bacteria, a minority of bacteria with lipid metabolism


References


Further reading

* {{modelling ecosystems Metabolism Trophic ecology