HOME

TheInfoList



OR:

In the area of modern algebra known as
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, the Mathieu group ''M''23 is a sporadic simple group of
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
:   2732571123 = 10200960 : ≈ 1 × 107.


History and properties

''M''23 is one of the 26 sporadic groups and was introduced by . It is a 4-fold transitive permutation group on 23 objects. The Schur multiplier and the outer automorphism group are both trivial. calculated the integral cohomology, and showed in particular that M23 has the unusual property that the first 4 integral homology groups all vanish. The inverse Galois problem seems to be unsolved for M23. In other words, no
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
in Z 'x''seems to be known to have M23 as its
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
. The inverse Galois problem is solved for all other sporadic simple groups.


Construction using finite fields

Let be the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
with 211 elements. Its group of units has order − 1 = 2047 = 23 · 89, so it has a cyclic
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgrou ...
of order 23. The Mathieu group M23 can be identified with the group of - linear automorphisms of that stabilize . More precisely, the action of this automorphism group on can be identified with the 4-fold transitive action of M23 on 23 objects.


Representations

M23 is the point stabilizer of the action of the Mathieu group M24 on 24 points, giving it a 4-transitive permutation representation on 23 points with point stabilizer the Mathieu group M22. M23 has 2 different rank 3 actions on 253 points. One is the action on unordered pairs with orbit sizes 1+42+210 and point stabilizer M21.2, and the other is the action on heptads with orbit sizes 1+112+140 and point stabilizer 24.A7. The integral representation corresponding to the permutation action on 23 points decomposes into the trivial representation and a 22-dimensional representation. The 22-dimensional representation is irreducible over any field of characteristic not 2 or 23. Over the field of order 2, it has two 11-dimensional representations, the restrictions of the corresponding representations of the Mathieu group M24.


Maximal subgroups

There are 7 conjugacy classes of maximal subgroups of ''M''23 as follows: * M22, order 443520 * PSL(3,4):2, order 40320, orbits of 21 and 2 * 24:A7, order 40320, orbits of 7 and 16 : Stabilizer of W23 block * A8, order 20160, orbits of 8 and 15 * M11, order 7920, orbits of 11 and 12 * (24:A5):S3 or M20:S3, order 5760, orbits of 3 and 20 (5 blocks of 4) : One-point stabilizer of the sextet group * 23:11, order 253, simply transitive


Conjugacy classes


References

* * * Reprinted in * * * * * * * * * * *


External links


MathWorld: Mathieu Groups

Atlas of Finite Group Representations: M23
{{DEFAULTSORT:Mathieu Group M23 Sporadic groups