
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a map or mapping is a
function in its general sense. These terms may have originated as from the process of making a
geographical map: ''mapping'' the Earth surface to a sheet of paper.
The term ''map'' may be used to distinguish some special types of functions, such as
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s. For example, a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
is a homomorphism of
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s, while the term
linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
may have this meaning or it may mean a
linear polynomial. In
category theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, a map may refer to a
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
.
The term ''transformation'' can be used interchangeably,
but ''
transformation'' often refers to a function from a set to itself. There are also a few less common uses in
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
and
graph theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
.
Maps as functions
In many branches of mathematics, the term ''map'' is used to mean a
function,
sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
" in
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a "
linear transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
" in
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, etc.
Some authors, such as
Serge Lang, use "function" only to refer to maps in which the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
is a set of numbers (i.e. a subset of
R or
C), and reserve the term ''mapping'' for more general functions.
Maps of certain kinds have been given specific names. These include
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s in
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
,
isometries in
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
,
operators in
analysis
Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
and
representations in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
.
In the theory of
dynamical system
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
s, a map denotes an
evolution function used to create
discrete dynamical systems.
A ''partial map'' is a ''
partial function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly the whole itself) to . The subset , that is, the '' domain'' of viewed as a function, is called the domain of definition or natural domain ...
''. Related terminology such as ''
domain'', ''
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
'', ''
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
'', and ''
continuous'' can be applied equally to maps and functions, with the same meaning. All these usages can be applied to "maps" as general functions or as functions with special properties.
As morphisms
In category theory, "map" is often used as a synonym for "
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
" or "arrow", which is a structure-respecting function and thus may imply more structure than "function" does.
For example, a morphism
in a
concrete category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category). This functor makes it possible to think of the objects of the category as sets with additional ...
(i.e. a morphism that can be viewed as a function) carries with it the information of its domain (the source
of the morphism) and its codomain (the target
). In the widely used definition of a function
,
is a subset of
consisting of all the pairs
for
. In this sense, the function does not capture the set
that is used as the codomain; only the range
is determined by the function.
See also
*
*
Arrow notation – e.g.,
, also known as ''map''
*
*
*
List of chaotic maps
*
Maplet arrow (↦) – commonly pronounced "maps to"
*
*
*
References
Works cited
*
External links
{{authority control
Basic concepts in set theory