Mantissa (logarithm)
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the common logarithm (aka "standard logarithm") is the
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
with base 10. It is also known as the decadic logarithm, the decimal logarithm and the Briggsian logarithm. The name "Briggsian logarithm" is in honor of the British mathematician Henry Briggs who conceived of and developed the values for the "common logarithm". Historically', the "common logarithm" was known by its Latin name ''logarithmus decimalis'' or ''logarithmus decadis''. The mathematical notation for using the common logarithm is , , or sometimes with a capital ; on
calculator An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-si ...
s, it is printed as "log", but mathematicians usually mean
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
(logarithm with base ≈ 2.71828) rather than common logarithm when writing "log". Before the early 1970s, handheld electronic calculators were not available, and
mechanical calculator A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or a simulation like an analog computer or a slide rule. Most mechanical calculators were comparable in si ...
s capable of multiplication were bulky, expensive and not widely available. Instead, tables of base-10 logarithms were used in science, engineering and navigation—when calculations required greater accuracy than could be achieved with a
slide rule A slide rule is a hand-operated mechanical calculator consisting of slidable rulers for conducting mathematical operations such as multiplication, division, exponents, roots, logarithms, and trigonometry. It is one of the simplest analog ...
. By turning multiplication and division to addition and subtraction, use of logarithms avoided laborious and error-prone paper-and-pencil multiplications and divisions. Because logarithms were so useful,
table Table may refer to: * Table (database), how the table data arrangement is used within the databases * Table (furniture), a piece of furniture with a flat surface and one or more legs * Table (information), a data arrangement with rows and column ...
s of base-10 logarithms were given in appendices of many textbooks. Mathematical and navigation handbooks included tables of the logarithms of
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
s as well. For the history of such tables, see
log table Mathematical tables are lists of numbers showing the results of a calculation with varying arguments. Trigonometric tables were used in ancient Greece and India for applications to astronomy and celestial navigation, and continued to be widely u ...
.


Mantissa and characteristic

An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same
fractional part The fractional part or decimal part of a non‐negative real number x is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than , called ''floor'' of or \lfloor x\rfloor. Then, the fractional ...
. The fractional part is known as the mantissa. Thus, log tables need only show the fractional part. Tables of common logarithms typically listed the mantissa, to four or five decimal places or more, of each number in a range, e.g. 1000 to 9999. The integer part, called the characteristic, can be computed by simply counting how many places the decimal point must be moved, so that it is just to the right of the first significant digit. For example, the logarithm of 120 is given by the following calculation: :\log_(120) = \log_\left(10^2 \times 1.2\right) = 2 + \log_(1.2) \approx 2 + 0.07918. The last number (0.07918)—the fractional part or the mantissa of the common logarithm of 120—can be found in the table shown. The location of the decimal point in 120 tells us that the integer part of the common logarithm of 120, the characteristic, is 2.


Negative logarithms

Positive numbers less than 1 have negative logarithms. For example, :\log_(0.012) = \log_\left(10^ \times 1.2\right) = -2 + \log_(1.2) \approx -2 + 0.07918 = -1.92082. To avoid the need for separate tables to convert positive and negative logarithms back to their original numbers, one can express a negative logarithm as a negative integer characteristic plus a positive mantissa. To facilitate this, a special notation, called ''bar notation,'' is used: :\log_(0.012) \approx \bar + 0.07918 = -1.92082. The bar over the characteristic indicates that it is negative, while the mantissa remains positive. When reading a number in bar notation out loud, the symbol \bar is read as "bar ", so that \bar.07918 is read as "bar 2 point 07918...". An alternative convention is to express the logarithm modulo 10, in which case :\log_(0.012) \approx 8.07918 \bmod 10, with the actual value of the result of a calculation determined by knowledge of the reasonable range of the result. The following example uses the bar notation to calculate 0.012 × 0.85 = 0.0102: :\begin \text & \log_(0.012) \approx\bar.07918\\ \text\;\;\log_(0.85) &= \log_\left(10^\times 8.5\right) = -1 + \log_(8.5) &\approx -1 + 0.92942 = \bar.92942\\ \log_(0.012 \times 0.85) &= \log_(0.012) + \log_(0.85) &\approx \bar.07918 + \bar.92942\\ &= (-2 + 0.07918) + (-1 + 0.92942) &= -(2 + 1) + (0.07918 + 0.92942)\\ &= -3 + 1.00860 &= -2 + 0.00860\;^*\\ &\approx \log_\left(10^\right) + \log_(1.02) &= \log_(0.01 \times 1.02)\\ &= \log_(0.0102). \end * This step makes the mantissa between 0 and 1, so that its
antilog In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
(10) can be looked up. The following table shows how the same mantissa can be used for a range of numbers differing by powers of ten: Note that the mantissa is common to all of the . This holds for any positive real number x because :\log_\left(x \times10^i\right) = \log_(x) + \log_\left(10^i\right) = \log_(x) + i. Since is a constant, the mantissa comes from \log_(x), which is constant for given x. This allows a
table of logarithms Mathematical tables are lists of numbers showing the results of a calculation with varying arguments. Trigonometric tables were used in ancient Greece and India for applications to astronomy and celestial navigation, and continued to be widely use ...
to include only one entry for each mantissa. In the example of , 0.698 970 (004 336 018 ...) will be listed once indexed by 5 (or 0.5, or 500, etc.).


History

Common logarithms are sometimes also called "Briggsian logarithms" after Henry Briggs, a 17th century British mathematician. In 1616 and 1617, Briggs visited
John Napier John Napier of Merchiston ( ; Latinisation of names, Latinized as Ioannes Neper; 1 February 1550 – 4 April 1617), nicknamed Marvellous Merchiston, was a Scottish landowner known as a mathematician, physicist, and astronomer. He was the 8 ...
at
Edinburgh Edinburgh is the capital city of Scotland and one of its 32 Council areas of Scotland, council areas. The city is located in southeast Scotland and is bounded to the north by the Firth of Forth and to the south by the Pentland Hills. Edinburgh ...
, the inventor of what are now called natural (base-''e'') logarithms, in order to suggest a change to Napier's logarithms. During these conferences, the alteration proposed by Briggs was agreed upon; and after his return from his second visit, he published the first
chiliad 1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000. A group of one thousand ...
of his logarithms. Because base-10 logarithms were most useful for computations, engineers generally simply wrote "" when they meant . Mathematicians, on the other hand, wrote "" when they meant for the natural logarithm. Today, both notations are found. Since hand-held electronic calculators are designed by engineers rather than mathematicians, it became customary that they follow engineers' notation. So the notation, according to which one writes "" when the natural logarithm is intended, may have been further popularized by the very invention that made the use of "common logarithms" far less common, electronic calculators. To mitigate the ambiguity, the ISO 80000 specification recommends that should be , while should be written , which unfortunately is used for the base-2 logarithm by CLRS and Sedgwick and ''
The Chicago Manual of Style ''The Chicago Manual of Style'' (''CMOS'') is a style guide for American English published since 1906 by the University of Chicago Press. Its 18 editions (the most recent in 2024) have prescribed writing and citation styles widely used in publ ...
''..


Numeric value

The numerical value for logarithm to the base 10 can be calculated with the following identities: : \log_(x) = \frac \quad or \quad \log_(x) = \frac \quad or \quad \log_(x) = \frac \quad using logarithms of any available base \, B ~. as procedures exist for determining the numerical value for logarithm base (see ) and logarithm base 2 (see Algorithms for computing binary logarithms).


Derivative

The derivative of a logarithm with a base ''b'' is such that \log_b(x)=, so \log_(x)=.


See also

*
Binary logarithm In mathematics, the binary logarithm () is the exponentiation, power to which the number must be exponentiation, raised to obtain the value . That is, for any real number , :x=\log_2 n \quad\Longleftrightarrow\quad 2^x=n. For example, th ...
*
Cologarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , then ...
*
Decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a Power, root-power, and field quantities, power or root-power quantity on a logarithmic scale. Two signals whos ...
*
Logarithmic scale A logarithmic scale (or log scale) is a method used to display numerical data that spans a broad range of values, especially when there are significant differences among the magnitudes of the numbers involved. Unlike a linear Scale (measurement) ...
* Napierian logarithm *
Significand The significand (also coefficient, sometimes argument, or more ambiguously mantissa, fraction, or characteristic) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its s ...
(also commonly called mantissa)


Notes


References


Bibliography

* * * {{Authority control Logarithms