Magnox is a type of
nuclear power / production reactor that was designed to run on
natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
with
graphite as the moderator and
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
gas as the
heat exchange coolant. It belongs to the wider class of
gas-cooled reactors. The name comes from the
magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
-
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
alloy
An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
(called magnesium non-oxidising), used to clad the
fuel rod
Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
Oxide fuel
For fission reactors, the fuel (typically based on uranium) is usually based o ...
s inside the reactor. Like most other
generation I nuclear reactors, the magnox was designed with the dual purpose of producing
electrical power
Electric power is the rate of transfer of electrical energy within a electric circuit, circuit. Its SI unit is the watt, the general unit of power (physics), power, defined as one joule per second. Standard prefixes apply to watts as with oth ...
and
plutonium-239
Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
for the
nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.
As with other plutonium-producing reactors, conserving
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s is a key element of the design. In magnox, the
neutrons are moderated in large blocks of
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
. The efficiency of graphite as a moderator allows the magnox to run using natural uranium fuel, in contrast with the more common commercial
light-water reactor
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reacto ...
which requires slightly
enriched uranium
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
. Graphite oxidizes readily in air, so the core is cooled with CO
2, which is then pumped into a
heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
to generate
steam
Steam is water vapor, often mixed with air or an aerosol of liquid water droplets. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. Saturated or superheated steam is inv ...
to drive conventional
steam turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
equipment for power production. The core is open on one end, so fuel elements can be added or removed while the reactor is still running.
The
dual-use capability of the magnox design led to the UK building up a large stockpile of
fuel-grade (reactor-grade) plutonium, with the aid of the
B205 reprocessing facility. The low-to-interim
burnup feature of the reactor design would become responsible for changes to US regulatory classifications after the US–UK
reactor-grade plutonium detonation test of the 1960s. Despite improvements to the design in later decades as electricity generation became the primary operational aim, magnox reactors were never capable of competing with the higher efficiency and higher fuel
burnup of
pressurised water reactor
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan, India and Canada).
In a PWR, water is used both as ...
s.
In total, only a few dozen reactors of this type were constructed, most of them in the UK from the 1950s to the 1970s, with very few exported to other countries. The first magnox reactor to come online was
Calder Hall (at the
Sellafield
Sellafield, formerly known as Windscale, is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste storage, nuclear waste processing and storage and nucle ...
site) in 1956, frequently regarded as the world's first commercial nuclear power station,
while the last in Britain to shut down was Reactor 1 in
Wylfa (on
Anglesey
Anglesey ( ; ) is an island off the north-west coast of Wales. It forms the bulk of the Principal areas of Wales, county known as the Isle of Anglesey, which also includes Holy Island, Anglesey, Holy Island () and some islets and Skerry, sker ...
) in 2015. ,
North Korea
North Korea, officially the Democratic People's Republic of Korea (DPRK), is a country in East Asia. It constitutes the northern half of the Korea, Korean Peninsula and borders China and Russia to the north at the Yalu River, Yalu (Amnok) an ...
remains the only operator to continue using magnox style reactors, at the
Yongbyon Nuclear Scientific Research Center. The magnox design was superseded by the
advanced gas-cooled reactor
The advanced gas-cooled reactor (AGR) is a type of nuclear reactor designed and operated in the United Kingdom. These are the generation II reactor, second generation of British gas-cooled reactors, using Nuclear graphite, graphite as the neutron ...
, which is similarly cooled but includes changes to improve its economic performance.
General description
Windscale
The UK's first full-scale
nuclear reactor
A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
was the
Windscale Pile in
Sellafield
Sellafield, formerly known as Windscale, is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste storage, nuclear waste processing and storage and nucle ...
. The pile was designed for the production of
plutonium-239
Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
which was bred in multi-week reactions taking place in
natural uranium
Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
fuel. Under normal conditions, natural uranium does not absorb enough of its own emitted "fast"
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s to maintain a
chain reaction
A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events.
Chain reactions are one way that sys ...
. To improve the fuel's sensitivity to neutrons, a
neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely ...
is used, in this case highly purified
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
.
The reactors consisted of a huge cube of this material (the "pile") made up of many smaller blocks and drilled through horizontally to make a large number of ''fuel channels''. Uranium fuel was placed in aluminium canisters and pushed into the channels in the front, pushing previous fuel canisters through the channel and out the back of the reactor where they fell into a pool of water. The system was designed to work at low temperatures and power levels and was air-cooled with the help of large fans.
[
Graphite is flammable and presents a serious safety risk. This was demonstrated on 10 October 1957 when Unit 1 of the now two-unit site caught fire. The reactor burned for three days, and massive contamination was only avoided due to the addition of filtering systems that had previously been derided as unnecessary " follies".
]
Magnox
As the UK nuclear establishment began to turn its attention to nuclear power
Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
, the need for more plutonium for weapons development remained acute. This led to an effort to adapt the basic Windscale design to a power-producing version that would also produce plutonium. In order to be economically useful the plant would have to run at much higher power levels, and in order to efficiently convert that power to electricity, it would have to run at higher temperatures.
At these power levels, the fire risk is amplified and air cooling is no longer appropriate. In the case of the magnox design, this led to the use of carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
(CO2) as the coolant. There is no facility in the reactor to adjust the gas flow through the individual channels whilst at power, but gas flow was adjusted by using flow gags attached to the support strut which located into the diagrid. These gags were used to increase flow in the centre of the core and to reduce it at the periphery. Principal control over the reaction rate was provided by a number (48 at Chapelcross and Calder Hall) of boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
-steel control rods which could be raised and lowered as required in vertical channels.
At higher temperatures, aluminium is no longer structurally sound, which led to the development of the magnox alloy fuel cladding. Unfortunately, magnox is increasingly reactive with increasing temperature, and the use of this material limited the operational gas temperatures to , much lower than desirable for efficient steam generation. This limit also meant that the reactors had to be very large in order to generate any given power level, which was further amplified by the use of gas for cooling, as the low thermal capacity of the fluid required very high flow rates.
The magnox fuel elements consisted of refined uranium enclosed in a loose-fitting magnox shell and then pressurized with helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
. The outside of the shell was typically finned in order to improve heat exchange with the CO2. Magnox alloy is reactive with water, which means it cannot be left in a cooling pond after extraction from the reactor for extended periods. In contrast to the Windscale layout, the magnox design used vertical fuel channels. This required the fuel shells to lock together end-to-end, or to sit one on top the other to allow them to be pulled out of the channels from the top.
Like the Windscale designs, the later magnox reactors allowed access to the fuel channels and could be refuelled while operating. This was a key criterion for the design because its use of natural uranium leads to low burnup ratios and the requirement for frequent refuelling. For power use, the fuel canisters were left in the reactor as long as possible, while for plutonium production they were removed earlier. The complicated refuelling equipment proved to be less reliable than the reactor systems, and perhaps not advantageous overall.
The entire reactor assembly was placed in a large pressure vessel. Due to the size of the pile, only the reactor core itself was placed within the steel pressure assembly, which was then surrounded by a concrete confinement building (or ''biological shield''). As there was no water in the core, and thus no possibility of a steam explosion, the building was able to tightly wrap the pressure vessel, which helped reduce construction costs. In order to keep the size of the confinement building down, the early magnox designs placed the heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
for the CO2 gas outside the dome, connected through piping. Although there were strengths with this approach in that maintenance and access was generally more straightforward, the major weakness was the radiation 'shine' emitted particularly from the unshielded top duct.
The magnox design was an evolution and never truly finalised, and later units differ considerably from earlier ones. As neutron fluxes increased in order to improve power densities problems with neutron embrittlement Neutron embrittlement, sometimes more broadly radiation embrittlement, is the embrittlement of various materials due to the action of neutrons. This is primarily seen in nuclear reactors, where the release of high-energy neutrons causes the long-te ...
were encountered, particularly at low temperatures. Later units at Oldbury and Wylfa replaced the steel pressure vessels with prestressed concrete
Prestressed concrete is a form of concrete used in construction. It is substantially prestressed (Compression (physics), compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. Post-t ...
versions which also contained the heat exchangers and steam plant. Working pressure varies from 6.9 to 19.35 bar for the steel vessels, and 24.8 and 27bar for the two concrete designs.
No British construction company at the time was large enough to build all the power stations, so various competing consortiums were involved, adding to the differences between the stations; for example, nearly every power station used a different design of magnox fuel element. Most of the magnox builds suffered time overruns and cost escalation.[
For the initial start up of the reactor neutron sources were located within the core to provide sufficient neutrons to initiate the nuclear reaction. Other aspects of the design included the use of flux shaping or flattening bars or controls rods to even out (to some extent) the neutron flux density across the core. If not used, the flux in the centre would be very high relative to the outer areas leading to excessive central temperatures and lower power output limited by the temperature of the central areas. Each fuel channel would have several elements stacked one upon another to form a ''stringer''. This required the presence of a latching mechanism to allow the stack to be withdrawn and handled. This caused some problems as the Nimonic springs used contained cobalt, which became irradiated giving high gamma level when removed from the reactor. Additionally, thermocouples were attached to some elements and needed to be removed on fuel discharge from the reactor.
]
AGR
The dual-use nature of the magnox design leads to design compromises that limit its economic performance. As the magnox design was being rolled out, work was already underway on the advanced gas-cooled reactor
The advanced gas-cooled reactor (AGR) is a type of nuclear reactor designed and operated in the United Kingdom. These are the generation II reactor, second generation of British gas-cooled reactors, using Nuclear graphite, graphite as the neutron ...
(AGR) with the explicit intention of making the system more economical. Primary among the changes was the decision to run the reactor at much higher temperatures, about , which would greatly improve the efficiency when running the power-extracting steam turbine
A steam turbine or steam turbine engine is a machine or heat engine that extracts thermal energy from pressurized steam and uses it to do mechanical work utilising a rotating output shaft. Its modern manifestation was invented by Sir Charles Par ...
s. This was too hot for the magnox alloy, and the AGR originally intended to use a new beryllium
Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
-based cladding, but this proved too brittle. This was replaced by a stainless steel
Stainless steel, also known as inox, corrosion-resistant steel (CRES), or rustless steel, is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Stainless steel's resistance to corrosion comes from its chromi ...
cladding, but this absorbed enough neutrons to affect criticality, and in turn required the design to operate on slightly enriched uranium
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
rather than the magnox's natural uranium, driving up fuel costs. Ultimately the economics of the system proved little better than Magnox. Former Treasury Economic Advisor, David Henderson, described the AGR programme as one of the two most costly British government-sponsored project errors, alongside Concorde
Concorde () is a retired Anglo-French supersonic airliner jointly developed and manufactured by Sud Aviation and the British Aircraft Corporation (BAC).
Studies started in 1954, and France and the United Kingdom signed a treaty establishin ...
.
Technical information
Source:
Economics
The first magnox reactors at Calder Hall were designed principally to produce plutonium for nuclear weapons
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either nuclear fission, fission (fission or atomic bomb) or a combination of fission and nuclear fusion, fusion reactions (thermonuclear weap ...
.[ The production of plutonium from uranium by irradiation in a pile generates large quantities of heat which must be disposed of, and so generating steam from this heat, which could be used in a turbine to generate electricity, or as process heat in the nearby Windscale works, was seen as a kind of free by-product of an essential process.
The Calder Hall reactors had low efficiency by today's standards, only 18.8%.]
The British government decided in 1957 that electricity generation by nuclear power would be promoted, and that there would be a building programme to achieve 5,000 to 6,000MWe
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor o ...
capacity by 1965, a quarter of UK's generating needs. Although Sir John Cockcroft had advised the government that electricity generated by nuclear power would be more expensive than that from coal, the government decided that nuclear power stations as alternatives to coal-fired power station
A coal-fired power station or coal power plant is a thermal power station which burns coal to generate electricity. Worldwide there are about 2,500 coal-fired power stations, on average capable of generating a gigawatt each. They generate ...
s would be useful to reduce the bargaining power of the coal miners' unions, and so decided to go ahead. In 1960 a government white paper
A white paper is a report or guide that informs readers concisely about a complex issue and presents the issuing body's philosophy on the matter. It is meant to help readers understand an issue, solve a problem, or make a decision. Since the 199 ...
scaled back the building programme to 3,000MWe,[ acknowledging that coal generation was 25% cheaper.][ A government statement to the ]House of Commons
The House of Commons is the name for the elected lower house of the Bicameralism, bicameral parliaments of the United Kingdom and Canada. In both of these countries, the Commons holds much more legislative power than the nominally upper house of ...
in 1963 stated that nuclear generation was more than twice as expensive as coal.[ The ''plutonium credit'' which assigned a value to the plutonium produced was used to improve the economic case, although the operators of the power stations were never paid this credit.
Once removed from the reactor, the used fuel elements are stored in cooling ponds (with the exception of Wylfa which has dry stores in a carbon dioxide atmosphere) where the decay heat is transferred to the pond water, and then removed by the pond water circulation, cooling and filtration system. The fact that fuel elements can only be stored for a limited period in water before the magnox cladding deteriorates, and must therefore inevitably be reprocessed, added to the costs of the magnox programme.]
Later reviews criticised the continuing development project by project instead of standardisation on the most economical design, and for persisting with the development of a reactor which achieved only two export orders.
A retrospective evaluation of costs, using a typical 5% discount rate on capital, estimated magnox electricity costs were nearly 50% higher than coal power stations would have provided.
Safety
The magnox reactors were considered at the time to have a considerable degree of inherent safety because of their simple design, low power density, and gas coolant. Because of this they were not provided with secondary containment features. A safety design principle at the time was that of the "maximum credible accident", and the assumption was made that if the plant were designed to withstand that, then all other lesser but similar events would be encompassed. Loss of coolant accidents (at least those considered in the design) would not cause large-scale fuel failure as the Magnox cladding would retain the bulk of the radioactive material, assuming the reactor was rapidly shutdown (a SCRAM), because the decay heat could be removed by natural circulation of air. As the coolant is already a gas, explosive pressure buildup from boiling is not a risk, as happened in the catastrophic steam explosion
A steam explosion is an explosion caused by violent boiling or flashing of water or ice into steam, occurring when water or ice is either superheated, rapidly heated by fine hot debris produced within it, or heated by the interaction of molten ...
at the Chernobyl accident. Failure of the reactor shutdown system to rapidly shut down the reactor, or failure of natural circulation, was not considered in the design. In 1967 Chapelcross experienced a fuel melt due to restricted gas flow in an individual channel and, although this was dealt with by the station crew without major incident, this event had not been designed or planned for, and the radioactivity released was greater than anticipated during the station design.
Despite the belief in their inherently safe design, it was decided that the magnox stations would not be built in heavily populated areas. The positioning constraint decided upon was that any 10-degree sector would have a population less than 500 within , 10,000 within and 100,000 within . In addition population around the site in all directions would be less than six times the 10-degree limits. Planning permission constraints would be used to prevent any large growth of population within five miles.
In the older steel pressure vessel design, boilers and gas ducting are outside the concrete biological shield. Consequently, this design emits a significant amount of direct gamma
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
and neutron radiation
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides— ...
, termed ''direct shine'', from the reactors. For example, the most exposed members of the public living near Dungeness
Dungeness (, ) is a headland on the coast of Kent, England, formed largely of a shingle beach in the form of a cuspate foreland. It shelters a large area of low-lying land, Romney Marsh. Dungeness spans Dungeness Nuclear Power Station, the ham ...
magnox reactor in 2002 received 0.56 mSv, over half the International Commission on Radiological Protection recommended maximum radiation dose limit for the public, from ''direct shine'' alone. The doses from the Oldbury and Wylfa reactors, which have concrete pressure vessels which encapsulate the complete gas circuit, are much lower.
Reactors built
In all, 11 power stations totalling 26 units were built in the United Kingdom where the design originated. In addition, one was exported to Tōkai in Japan and another to Latina in Italy.[ North Korea also developed their own magnox reactors, based on the UK design which was made public at an Atoms for Peace conference.
The first magnox power station, Calder Hall, was the world's first nuclear power station to generate electrical power on an industrial scale] (a power station in Obninsk, Russia started supplying the grid in very small non-commercial quantities on 1 December 1954). The first connection to the grid was on 27 August 1956, and the plant was officially opened by Queen Elizabeth II
Elizabeth II (Elizabeth Alexandra Mary; 21 April 19268 September 2022) was Queen of the United Kingdom and other Commonwealth realms from 6 February 1952 until Death and state funeral of Elizabeth II, her death in 2022. ...
on 17 October 1956. When the station closed on 31 March 2003, the first reactor had been in use for nearly 47 years.
The first two stations (Calder Hall and Chapelcross) were originally owned by the UKAEA and primarily used in their early life to produce weapons-grade
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuc ...
plutonium
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
, with two fuel loads per year. From 1964 they were mainly used on commercial fuel cycles and in April 1995 the UK Government announced that all production of plutonium for weapons purposes had ceased.
The later and larger units were owned by the CEGB and operated on commercial fuel cycles. However Hinkley Point A and two other stations were modified so that weapons-grade plutonium could be extracted for military purposes should the need arise.
Derating to reduce corrosion
In early operation it was found that there was significant oxidation of mild steel components by the high temperature carbon dioxide coolant, requiring a reduction in operating temperature
An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the de ...
and power output. For example, the Latina reactor was derated in 1969 by 24%, from 210MWe to 160MWe, by the reduction of operating temperature from .
Last operating magnox reactor
The Nuclear Decommissioning Authority (NDA) announced on 30 December 2015 that Wylfa Unit 1 – the world's last operating Magnox reactor – was closed. The unit had generated electricity for five years longer than originally planned. Two units at Wylfa were both scheduled to shut down at the end of 2012, but the NDA decided to shut down Unit 2 in April 2012 so that Unit 1 could continue operating in order to fully utilize existing stocks of fuel, which was no longer being manufactured.
The small 5MWe
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor o ...
experimental reactor, based on the magnox design, at Yongbyon in North Korea
North Korea, officially the Democratic People's Republic of Korea (DPRK), is a country in East Asia. It constitutes the northern half of the Korea, Korean Peninsula and borders China and Russia to the north at the Yalu River, Yalu (Amnok) an ...
, continues to operate .
Magnox definitions
Magnox alloy
Magnox is also the name of an alloy
An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
—mainly of magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
with small amounts of aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
and other metals—used in cladding unenriched uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
metal fuel with a non-oxidising covering to contain fission products. Magnox is short for magnesium non-oxidising. This material has the advantage of a low neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
capture cross-section, but has two major disadvantages:
*It limits the maximum temperature, and hence the thermal efficiency
In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
For ...
, of the plant.
*It reacts with water, preventing long-term storage of spent fuel under water.
Magnox fuel incorporated cooling fins to provide maximum heat transfer despite low operating temperatures, making it expensive to produce. While the use of uranium metal rather than oxide made reprocessing more straightforward and therefore cheaper, the need to reprocess fuel a short time after removal from the reactor meant that the fission product hazard was severe. Expensive remote handling facilities were required to address this danger.
Magnox plants
The term magnox may also loosely refer to:
*Three North Korea
North Korea, officially the Democratic People's Republic of Korea (DPRK), is a country in East Asia. It constitutes the northern half of the Korea, Korean Peninsula and borders China and Russia to the north at the Yalu River, Yalu (Amnok) an ...
n reactors, all based on the declassified blueprints of the Calder Hall magnox reactors:
**A small 5 MWe
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor o ...
experimental reactor at Yongbyon, operated from 1986 to 1994, and restarted in 2003. Plutonium from this reactor's spent fuel has been used in the North Korea nuclear weapons program.
**A 50 MWe reactor, also at Yongbyon, whose construction commenced in 1985 but was never finished in accord with the 1994 U.S.-North Korea Agreed Framework.
**A 200 MWe reactor at Taechon, construction of which also halted in 1994.
*Nine UNGG power reactors built in France, all now shut down. These were carbon dioxide-cooled, graphite reactors with natural uranium metal fuel, very similar in design and purpose to the British magnox reactors except that the fuel cladding was magnesium
Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
-zirconium
Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyis ...
alloy and that the bars were disposed horizontally (instead of vertically for magnox).
Decommissioning
The Nuclear Decommissioning Authority (NDA) is responsible for the decommissioning of the UK magnox power plants, at an estimated cost of £12.6billion. There has been debate about whether a 25 or 100-year decommissioning strategy should be adopted. After 80years short-lifetime radioactive material in the defuelled core would have decayed to the point that human access to the reactor structure would be possible, easing dismantling work. A shorter decommissioning strategy would require a robotic core dismantling technique. The current approximately 100-year decommissioning plan is called Safestore. A 130-year Deferred Safestore Strategy was also considered, with an estimated cost saving of £1.4 billion, but not selected.
In addition the Sellafield
Sellafield, formerly known as Windscale, is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste storage, nuclear waste processing and storage and nucle ...
site which, amongst other activities, reprocessed spent magnox fuel, has an estimated decommissioning cost of £31.5billion. Magnox fuel was produced at Springfields near Preston; estimated decommissioning cost is £371million. The total cost of decommissioning magnox activities is likely to exceed £20billion, averaging about £2billion per productive reactor site.
Calder Hall was opened in 1956 as the world's first commercial nuclear power station, and is a significant part of the UK's industrial heritage. The NDA is considering whether to preserve Calder Hall reactor 1 as a museum site.
All the UK's magnox reactor sites (apart from Calder Hall) are operated by Magnox Ltd, a subsidiary of the NDA.
Reactor Sites Management Company (RSMC), a NDA Site Licence Company (SLC), originally held the contract to manage Magnox Ltd on behalf of the NDA. In 2007, RSMC was acquired by American nuclear fuel cycle service provider EnergySolutions from British Nuclear Fuels.
On 1 October 2008, Magnox Electric Ltd separated into two nuclear licensed companies, Magnox North Ltd and Magnox South Ltd.
Magnox North sites
* Chapelcross
* Hunterston A
* Oldbury
* Trawsfynydd
Trawsfynydd (; Welsh language, Welsh for ) is a linear village in Gwynedd, Wales, near Llyn Trawsfynydd reservoir, and adjacent to the A470 road, A470 north of Bronaber and Dolgellau and 10 km (6 miles) south of Blaenau Ffestiniog. It als ...
* Wylfa
Magnox South sites
* Berkeley
* Bradwell
* Dungeness A
* Hinkley Point A
In January 2011 Magnox North Ltd and Magnox South Ltd recombined as Magnox Ltd. Following procurement and management issues with the contract, Magnox Ltd will become a subsidiary of the NDA in September 2019.
List of Magnox reactors in the UK
Magnox reactors exported from the UK
See also
*Nuclear power in the United Kingdom
Nuclear power in the United Kingdom generated 16.1% of the country's electricity in 2020. , the UK has five operational nuclear reactors at four locations (4 advanced gas-cooled reactors (AGR) and one pressurised water reactor (PWR)), producin ...
* UNGG, the similar class of reactors built in France
* Edge of Darkness, 1985 British television drama about the nuclear industry, which went by the working title "Magnox".
References
External links
Energy''Solutions''
Nuclear Sites Stakeholder Information
– Overview of each Magnox power station, provided by British Nuclear Group
Magnox Safety Reviews
, September 2000, HSE Nuclear Installations Inspectorate
Magnox Electric plc's strategy for decommissioning its nuclear licensed sites
, February 2002, HSE Nuclear Installations Inspectorate
The decommissioning of commercial magnox gas cooled reactor power stations in the United Kingdom
G. Holt, Magnox Electric, IAEA meeting paper, 8–10 September 1997
21–23 September 1988, Ente Nazionale per l'Energia Electrica
Review of ageing processes and their influence on Safety and Performance at Wylfa Nuclear Power Station
John Large, 14 March 2001 – includes detailed diagrams
Magnox Fuel Element Design
– Atomic Energy Insights
Sellafield Magnox cooling ponds cleanup job commences
– Nuclear Engineering International
A ponderous hazard
– Nuclear Engineering International
British Nuclear Group image asset library
– A large collection of interior and exterior photographs of all the Magnox power stations in the UK.
*
{{Energy in the United Kingdom, sources
Nuclear power reactor types
Graphite moderated reactors
Nuclear power in the United Kingdom