Magnesium–air Fuel Cell
   HOME

TheInfoList



OR:

Magnesium batteries are batteries that utilize
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
cations as charge carriers and possibly in the anode in
electrochemical cell An electrochemical cell is a device that either generates electrical energy from chemical reactions in a so called galvanic cell, galvanic or voltaic cell, or induces chemical reactions (electrolysis) by applying external electrical energy in an ...
s. Both non-rechargeable
primary cell A primary battery or primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and it is not rechargeable unlike a secondary cell ( rechargeable battery). In general, the electrochemical reaction occurring in ...
and rechargeable
secondary cell A rechargeable battery, storage battery, or secondary cell (formally a type of Accumulator (energy), energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a ...
chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries. Magnesium secondary cell batteries are an active research topic as a possible replacement or improvement over lithium-ion–based battery chemistries in certain applications. A significant advantage of magnesium cells is their use of a solid magnesium anode, offering
energy density In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measure ...
higher than lithium batteries. Insertion-type anodes ('magnesium ion') have been researched.


Primary cells

Primary magnesium cells have been developed since the early 20th century. In the anode, they take advantage of the low stability and high energy of magnesium metal, whose bonding is weaker by more than 250 kJ/mol compared to iron and most other transition metals, which bond strongly via their partially filled d-orbitals. A number of chemistries for
reserve battery A reserve battery, also called stand-by battery, is a primary battery where part is isolated until the battery needs to be used. When long storage is required, reserve batteries are often used, since the active chemicals of the cell are segregated u ...
types have been studied, with cathode materials including
silver chloride Silver chloride is an inorganic chemical compound with the chemical formula Ag Cl. This white crystalline solid is well known for its low solubility in water and its sensitivity to light. Upon illumination or heating, silver chloride converts ...
,
copper(I) chloride Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear gr ...
,
palladium(II) chloride Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value ...
,
copper(I) iodide Copper(I) iodide is an inorganic compound with the chemical formula . It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding. Copper(I) iodide is white, but samples often appe ...
,
copper(I) thiocyanate Copper(I) thiocyanate (or cuprous thiocyanate) is a coordination polymer with formula CuSCN. It is an air-stable, white solid used as a precursor for the preparation of other thiocyanate salts. Structure At least two polymorphs have been chara ...
,
manganese dioxide Manganese dioxide is the inorganic compound with the formula . This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for is for dry-cel ...
and
air An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
(oxygen). For example, a water-activated silver chloride/magnesium reserve battery became commercially available by 1943. The magnesium dry battery type BA-4386 was fully commercialised, with costs per unit approaching that of zinc batteries. Compared to equivalent zinc-carbon cells they had greater capacity by volume, and longer shelf life. The BA-4386 was widely used by the US military from 1968 until ca.1984, when it was replaced by a lithium thionyl chloride battery. A magnesium–air battery has a theoretical operating voltage of 3.1 V and energy density of 6.8 kWh/kg.
General Electric General Electric Company (GE) was an American Multinational corporation, multinational Conglomerate (company), conglomerate founded in 1892, incorporated in the New York (state), state of New York and headquartered in Boston. Over the year ...
produced a magnesium–air battery operating in neutral
NaCl Sodium chloride , commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is transparent or translucent, brittle, hygroscopic, and occurs as the mineral hali ...
solution as early as the 1960s. The magnesium–air battery is a primary cell, but has the potential to be 'refuelable' by replacement of the anode and electrolyte. Some primary magnesium batteries find use as land-based backup systems as well as undersea power sources, using seawater as the electrolyte. The
Mark 44 torpedo The Mark 44 torpedo is a now-obsolete air-launched and ship-launched lightweight torpedo manufactured in the United States, and under licence in Canada, France, Italy, Japan and the United Kingdom, with 10,500 being produced for U.S. service. It ...
uses a water-activated magnesium battery.


Secondary cells


Overview

Secondary magnesium ion batteries involve the reversible flux of Mg2+ ions. They are a candidate for improvement on
lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energ ...
technologies in certain applications. Magnesium has a theoretical energy density per unit mass under half that of lithium (18.8 MJ/kg (~2205 mAh/g) vs. 42.3 MJ/kg), but a volumetric energy density around 50% higher (32.731 GJ/m3 (3833 mAh/mL) vs. 22.569 GJ/m3 (2046 mAh/mL). Magnesium anodes do not exhibit
dendrite A dendrite (from Ancient Greek language, Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the neurotransmission, electrochemical stimulation received from oth ...
formation, albeit only in certain nonaqueous solvents and at current densities below ca. 1 mA/cm2. This allows magnesium metal to be used without an intercalation compound at the anode, thus raising the theoretical maximum relative volumetric energy density to around 5 times that of a graphite electrode. Modeling and cell analysis indicate that magnesium-based batteries may have a cost advantage due to magnesium's relative abundance and ease of mining. Applications had been recognised by the 1990s based on V2O5, TiS2, or Ti2S4 cathode materials and magnesium anodes. However, instabilities in the discharge state and uncertainties on the role of water in the electrolyte limited progress. In 2000, Israeli researchers reported dendrite-free Mg plating in AlCl3-ether electrolytes with a fairy high (>2 V vs. Mg/Mg2+) anodic voltage stability limit. In that work, however, a low voltage (and somewhat expensive) anode material (chevrel-type Mo6S8) was used for Mg2+ intercalation. Despite research following that discovery, all attempts to develop a high-voltage Mg2+ intercalation anode for chloroaluminate (and related) electrolytes failed. Electrochemical Mg2+ intercalation into many solid materials is well known, for example from aqueous electrolytes. The problem is to find anode materials that show intercalation from the same solutions, which display reversible Mg metal plating. In contrast to the Mg-metal batteries, Mg-ion batteries do not use a Mg-metal anode, but rather a solid material capable of intercalating Mg2+ ions. Such batteries usually use an aqueous or other polar electrolyte. A commercially viable/competitive market niche for Mg-ion batteries has not been identified.


Research


Anodes and electrolytes

A key drawback to magnesium anodes is the tendency to form a passivating (non-conducting) surface layer when recharging. The passivating layer was thought to originate from electrolyte decomposition during ion reduction. Common counter ions such as
perchlorate A perchlorate is a chemical compound containing the perchlorate ion, , the conjugate base of perchloric acid (ionic perchlorate). As counterions, there can be metal cations, quaternary ammonium cations or other ions, for example, nitronium cat ...
and
tetrafluoroborate Tetrafluoroborate is the anion . This tetrahedral species is isoelectronic with tetrafluoroberyllate (), tetrafluoromethane (CF4), and tetrafluoroammonium () and is valence isoelectronic with many stable and important species including the perc ...
were found to contribute to passivation, as were some common
polar aprotic solvent A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding In chemistry, a hyd ...
s such as
carbonates A carbonate is a salt of carbonic acid, (), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate group . ...
and
nitrile In organic chemistry, a nitrile is any organic compound that has a functional group. The name of the compound is composed of a base, which includes the carbon of the , suffixed with "nitrile", so for example is called " propionitrile" (or pr ...
s. The passivating layer motivates the use of magnesium
intermetallics An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
as anode materials, as their lower reactivity with common electrolytes makes them less prone to passivation. This is particularly true for the intermetallic compound Mg3Bi2, which constitutes a type of magnesium insertion electrode, based on reversible insertion of magnesium metal into a host compound. In addition to bismuth,
tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
and
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
have been used in compound insertion electrodes. These prevent anode surface passivation, but suffer from anode destruction due to volumetric changes, as well as slow insertion kinetics. Examples of insertion anode types include cycling between elemental Sn and Mg2Sn. Grignard-based
ether In organic chemistry, ethers are a class of compounds that contain an ether group, a single oxygen atom bonded to two separate carbon atoms, each part of an organyl group (e.g., alkyl or aryl). They have the general formula , where R and R ...
eal electrolytes have been shown not to passivate. Magnesium organoborates showed electroplating without passivation. Mg(BPh2Bu2)2 was used in the first rechargeable magnesium battery, but its usefulness was limited by electrochemical oxidation (i.e., a low anodic limit of the voltage window). Other electrolytes researched include
borohydride Borohydride refers to the anion , which is also called tetrahydroborate or more commonly tetrahydrobiopterin, and its salts. Borohydride or hydroborate is also the term used for compounds containing , where ''n'' is an integer from 0 to 3, for ex ...
s,
phenolate Phenolates (also called phenoxides) are anions, salt (chemistry), salts, and esters of phenols, containing the phenolate ion. They may be formed by reaction of phenols with strong base. Properties Alkali metal phenolates, such as sodium phenoxi ...
s,
alkoxide In chemistry, an alkoxide is the conjugate base of an alcohol and therefore consists of an organic group bonded to a negatively charged oxygen atom. They are written as , where R is the organyl substituent. Alkoxides are strong bases and, whe ...
s, amido based complexes (e.g. based on
hexamethyldisilazane Bis(trimethylsilyl)amine (also known as hexamethyldisilazane and HMDS) is an organosilicon compound with the molecular formula CH3)3Sisub>2NH. The molecule is a derivative of ammonia with trimethylsilyl groups in place of two hydrogen atoms. An e ...
),
carborane Carboranes (or carbaboranes) are electron-delocalized (non-classically bonded) clusters composed of boron, carbon and hydrogen atoms.Grimes, R. N., ''Carboranes 3rd Ed.'', Elsevier, Amsterdam and New York (2016), . Like many of the related boron ...
salts, fluorinated alkoxyborates, a Mg(BH4)(NH2) solid state electrolyte, and gel polymers containing Mg(AlCl2EtBu)2 in
tetraglyme Tetraethylene glycol dimethyl ether (TEGDME or tetraglyme) is a polar aprotic solvent with excellent chemical and thermal stability. Its high boiling point and stability makes it an ideal candidate for separation processes and high temperature reac ...
/
PVDF Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. Its chemical formula is (C2H2F2)''n''. PVDF is a specialty plastic used ...
. Interest in magnesium-metal batteries started in 2000, when an Israeli group reported reversible magnesium plating from mixed solutions of
magnesium chloride Magnesium chloride is an inorganic compound with the formula . It forms hydrates , where ''n'' can range from 1 to 12. These salts are colorless or white solids that are highly soluble in water. These compounds and their solutions, both of which ...
and
aluminium chloride Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula . It forms a hexahydrate with the formula , containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are col ...
in ethers, such as
THF Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
. This electrolyte's primary advantage is a significantly larger positive limit of the voltage window (higher voltage). Since then, other Mg salts, less corrosive than chloride, have been reported. One drawback compared to lithium is magnesium's higher charge (+2) in solution, which tends to increase viscosity and reduce mobility. In solution a number of species may exist depending on counter ions/complexing agents – these often include singly-charged species (e.g. MgCl+ in the presence of chloride) – though dimers are often formed (e.g. Mg2Cl3+). Movement into cathode host lattices is problematically slow. In 2018 a chloride-free electrolyte together with a
quinone The quinones are a class of organic compounds that are formally "derived from aromatic compounds benzene.html" ;"title="uch as benzene">uch as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with ...
-based polymer cathode demonstrated promising performance, with up to kg−1
specific energy Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, st ...
, up to 3.4 kW/kg
specific power Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement ...
, and up to 87% retention at 2,500 cycles. The absence of chloride in the electrolyte was claimed to improve ion kinetics and reduce the amount of electrolyte needed, increasing performance. One promising approach is the combination of a Mg anode with a sulfur/carbon cathode. A non-nucleophilic electrolyte is needed that does not convert the sulfur into sulfide just by its reducing properties. Such electrolytes were developed on the basis of chlorine-containing and chlorine-free complex salts. The electrolyte is a Mg salt containing an Mg cation and two boron-hexafluoroisoproplylate groups as anions. This system is easy to synthesize, showing ionic conductivity similar to that of Li-ion cells, its electrochemical stability window is up to 4.5 V, it is stable in air and usable across solvents. Another approach used a water electrolyte (eliminating risks of fire/explosion). The design used reusable materials, and coated parts of the battery with
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
and bismuth-oxide to prevent dendrite formation, while still achieving energy density of 75 wH/kg. Independently, a quasi-solid state battery achieved 2.4 V and an energy density of 264 W·h kg⁻¹.


Cathode materials

Multiple cathode compounds have been researched. Materials investigated include zirconium disulfide,
cobalt(II,III) oxide Cobalt is a chemical element; it has symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, ...
,
tungsten diselenide Tungsten diselenide is an inorganic compound with the formula WSe2. The compound adopts a hexagonal crystalline structure similar to molybdenum disulfide. The tungsten atoms are covalently bonded to six selenium ligands in a trigonal prismatic coo ...
,
vanadium pentoxide Vanadium(V) oxide (''vanadia'') is the inorganic compound with the formula V2 O5. Commonly known as vanadium pentoxide, it is a dark yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of ...
and
vanadate In chemistry, a vanadate is an anionic coordination complex of vanadium. Often vanadate refers to oxoanions of vanadium, most of which exist in its highest oxidation state of +5. The complexes and are referred to as hexacyanovanadate(III) and no ...
. Cobalt-based
spinels The spinels are any of a class of minerals of general formulation which crystallise in the cubic (isometric) crystal system, with the X anions (typically chalcogens, like oxygen and sulfur) arranged in a cubic close-packed lattice and the cations ...
showed inferior kinetics to magnesium insertion compared to their behaviour with lithium. In 2000 the
chevrel phase Octahedral clusters are inorganic or organometallic cluster compounds composed of six metals in an octahedral array.Eric J. Welch and Jeffrey R. Long ''Atomlike Building Units of Adjustable Character: Solid-State and Solution Routes to Manipulating ...
form of Mo6S8 showed suitability as a cathode, enduring 2000 cycles at 100% discharge with a 15% loss; drawbacks were poor low temperature performance (reduced Mg mobility, compensated by substituting selenium), as well as low voltage (ca. 1.2 V), and low energy density (110 mAh/g). A
molybdenum disulfide Molybdenum disulfide (or moly) is an inorganic chemistry, inorganic compound composed of molybdenum and sulfur. Its chemical formula is . The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as ...
cathode reached 1.8 V and 170 mAh/g. Transition metal sulfides are promising cathode candidates. A hybrid magnesium cell using a mixed magnesium/sodium electrolyte with sodium insertion into a nanocrystalline iron(II) disulfide cathode was reported in 2015.
Manganese dioxide Manganese dioxide is the inorganic compound with the formula . This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for is for dry-cel ...
cathodes showed good properties, but deteriorated on cycling. Spinels are electrochemically active in a Mg-ion configuration using a carbon-based adsorption anode. High-voltage Mg-ion materials, including MgMn2O4, MgV2O4, and MgCr2O4 have been studied to understand diffusion pathways. Another framework structure type, termed ("post spinels", with the prototypical formula CaFe2O4) are studied. In 2014 a rechargeable magnesium battery (conversion-type) was reported utilizing an
ion-exchange Ion exchange is a reversible interchange of one species of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid. Ion exchange is used in softening or demineralizing of water, purification of ch ...
d,
olivine The mineral olivine () is a magnesium iron Silicate minerals, silicate with the chemical formula . It is a type of Nesosilicates, nesosilicate or orthosilicate. The primary component of the Earth's upper mantle (Earth), upper mantle, it is a com ...
-type MgFeSiO4 cathode with a bis(trifluoromethylsulfonyl)imide/triglyme electrolyte – the cell showed a capacity of 300 mAh/g with a voltage of 2.4 V. MgMnSiO4 has been investigated as a potential Mg2+ insertion cathode. Cathodic materials other than non-inorganic metal oxide/sulfide types have been investigated. in 2015 a cathode based on a polymer incorporating
anthraquinone Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic hydrocarbon, aromatic organic compound with formula . Several isomers exist but these terms usually refer to 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein th ...
was reported; Other organic and organo-polymer cathode materials capable of undergoing redox reactions have been investigated, such as poly-2,2'-dithiodianiline. Quinone-based cathodes formed the cathode a high energy density magnesium battery reported by researchers in 2019. In 2016 a porous carbon/iodine combination cathode was reported as a potential alternative to Mg2+ insertion cathodes - the chemistry was reported as potentially suitable for a rechargeable flow battery.


See

*
List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry. ...
*
Magnesium-sulfur battery A magnesium–sulfur battery is a rechargeable battery that uses magnesium ions as its charge carrier, magnesium metal as its anode, and sulfur as its cathode. To increase the electronic conductivity of the cathode, sulfur is usually mixed with carb ...


Notes


References


Sources

* * * * * * {{refend Metal–air batteries Rechargeable batteries Magnesium Battery types Metal-ion batteries