HOME

TheInfoList



OR:

In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the loop space Ω''X'' of a pointed
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
''X'' is the space of (based) loops in ''X'', i.e. continuous pointed maps from the pointed
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
''S''1 to ''X'', equipped with the
compact-open topology In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory ...
. Two loops can be multiplied by
concatenation In formal language theory and computer programming, string concatenation is the operation of joining character strings end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalizations of concatenati ...
. With this operation, the loop space is an ''A''-space. That is, the multiplication is homotopy-coherently
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
. The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of path components of Ω''X'', i.e. the set of based-homotopy
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of based loops in ''X'', is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
, the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
''π''1(''X''). The iterated loop spaces of ''X'' are formed by applying Ω a number of times. There is an analogous construction for topological spaces without basepoint. The free loop space of a topological space ''X'' is the space of maps from the circle ''S''1 to ''X'' with the compact-open topology. The free loop space of ''X'' is often denoted by \mathcalX. As a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
, the free loop space construction is
right adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
to
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
with the circle, while the loop space construction is right adjoint to the reduced suspension. This adjunction accounts for much of the importance of loop spaces in
stable homotopy theory In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the ...
. (A related phenomenon in
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
is
currying In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument. In the prototypical example, one begins with a functi ...
, where the cartesian product is adjoint to the
hom functor In mathematics, specifically in category theory, hom-sets (i.e. sets of morphisms between object (category theory), objects) give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applicati ...
.) Informally this is referred to as
Eckmann–Hilton duality In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in cate ...
.


Eckmann–Hilton duality

The loop space is dual to the suspension of the same space; this duality is sometimes called
Eckmann–Hilton duality In the mathematical disciplines of algebraic topology and homotopy theory, Eckmann–Hilton duality in its most basic form, consists of taking a given diagram for a particular concept and reversing the direction of all arrows, much as in cate ...
. The basic observation is that : Sigma Z,X\approxeq , \Omega X/math> where ,B/math> is the set of homotopy classes of maps A \rightarrow B, and \Sigma A is the suspension of A, and \approxeq denotes the
natural Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
. This homeomorphism is essentially that of
currying In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument. In the prototypical example, one begins with a functi ...
, modulo the quotients needed to convert the products to reduced products. In general, , B/math> does not have a group structure for arbitrary spaces A and B. However, it can be shown that Sigma Z,X/math> and , \Omega X/math> do have natural group structures when Z and X are pointed, and the aforementioned isomorphism is of those groups. ''(See chapter 8, section 2)'' Thus, setting Z = S^ (the k-1 sphere) gives the relationship :\pi_k(X) \approxeq \pi_(\Omega X). This follows since the
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
is defined as \pi_k(X)= ^k,X/math> and the spheres can be obtained via suspensions of each-other, i.e. S^k=\Sigma S^.Topospaces wiki – Loop space of a based topological space
/ref>


See also

* Bott periodicity *
Eilenberg–MacLane space In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. ...
* Free loop *
Fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
* Gray's conjecture *
List of topologies The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, ...
* Loop group *
Path (topology) In mathematics, a path in a topological space X is a continuous function from a closed interval into X. Paths play an important role in the fields of topology and mathematical analysis. For example, a topological space for which there exists ...
*
Quasigroup In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element pro ...
*
Spectrum (topology) In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomo ...
* Path space (algebraic topology)


References

* *{{Citation , last1=May , first1=J. Peter , author1-link=J. Peter May , title=The Geometry of Iterated Loop Spaces , series=Lecture Notes in Mathematics , url=http://www.math.uchicago.edu/~may/BOOKSMaster.html , publisher=
Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in ...
, location=Berlin, New York , isbn=978-3-540-05904-2 , doi=10.1007/BFb0067491 , mr=0420610 , year=1972, volume=271 , url-access=subscription Topology Homotopy theory Topological spaces