HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a locally finite measure is a measure for which every point of the
measure space A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that ...
has a
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of finite measure.


Definition

Let (X, T) be a Hausdorff
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
and let \Sigma be a \sigma-algebra on X that contains the topology T (so that every
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
is a
measurable set In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts hav ...
, and \Sigma is at least as fine as the Borel \sigma-algebra on X). A measure/
signed measure In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign. Definition There are two slightly different concepts of a signed measure, de ...
/ complex measure \mu defined on \Sigma is called locally finite if, for every point p of the space X, there is an open
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
N_p of p such that the \mu-measure of N_p is finite. In more condensed notation, \mu is locally finite
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
\text p \in X, \text N_p \in T \mbox p \in N_p \mbox \left, \mu\left(N_p\right)\ < + \infty.


Examples

# Any
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
on X is locally finite, since it assigns unit measure to the whole space. Similarly, any measure that assigns finite measure to the whole space is locally finite. #
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
on
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
is locally finite. # By definition, any
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
is locally finite. # The
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinit ...
is sometimes locally finite and sometimes not: the counting measure on the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s with their usual
discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
is locally finite, but the counting measure on the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
with its usual Borel
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
is not.


See also

* *


References

{{Measure theory Measures (measure theory)