HOME

TheInfoList



OR:

The following is a list of
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s (
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. ''Note:'' ''x'' > 0 is assumed throughout this article, and the
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connect ...
is omitted for simplicity.


Integrals involving only logarithmic functions

: \int\log_a x\,dx = x\log_a x - \frac = \frac : \int\ln(ax)\,dx = x\ln(ax) - x : \int\ln (ax + b)\,dx = \frac : \int (\ln x)^2\,dx = x(\ln x)^2 - 2x\ln x + 2x : \int (\ln x)^n\,dx = x\sum^_(-1)^ \frac(\ln x)^k : \int \frac = \ln, \ln x, + \ln x + \sum^\infty_\frac : \int \frac = \operatorname(x), the logarithmic integral. : \int \frac = -\frac + \frac\int\frac \qquad\mboxn\neq 1\mbox : \int \ln f(x)\,dx = x\ln f(x) - \int x\frac\,dx \qquad\mbox f(x) > 0\mbox


Integrals involving logarithmic and power functions

: \int x^m\ln x\,dx = x^\left(\frac-\frac\right) \qquad\mboxm\neq -1\mbox : \int x^m (\ln x)^n\,dx = \frac - \frac\int x^m (\ln x)^ dx \qquad\mboxm\neq -1\mbox : \int \frac = \frac \qquad\mboxn\neq -1\mbox : \int \frac = -\frac-\frac \qquad\mboxm\neq 1\mbox : \int \frac = -\frac + \frac\int\frac \qquad\mboxm\neq 1\mbox : \int \frac = -\frac + \frac\int\frac \qquad\mboxn\neq 1\mbox : \int \frac = \ln \left, \ln x\ : \int \frac = \ln \left, \ln \left, \ln x\ \, etc. : \int \frac = \operatorname(\ln x) : \int \frac = \ln \left, \ln x\ + \sum^\infty_ (-1)^k\frac : \int \frac = -\frac \qquad\mboxn\neq 1\mbox : \int \ln(x^2+a^2)\,dx = x\ln(x^2+a^2)-2x+2a\tan^ \frac : \int \frac\ln(x^2+a^2)\,dx = \frac \ln^2(x^2+a^2)


Integrals involving logarithmic and trigonometric functions

: \int \sin (\ln x)\,dx = \frac(\sin (\ln x) - \cos (\ln x)) : \int \cos (\ln x)\,dx = \frac(\sin (\ln x) + \cos (\ln x))


Integrals involving logarithmic and exponential functions

: \int e^x \left(x \ln x - x - \frac\right)\,dx = e^x (x \ln x - x - \ln x) : \int \frac \left( \frac-\ln x \right)\,dx = \frac : \int e^x \left( \frac- \frac \right)\,dx = \frac


''n'' consecutive integrations

For n consecutive integrations, the formula : \int\ln x\,dx = x(\ln x - 1) +C_ generalizes to : \int\dotsi\int\ln x\,dx\dotsm dx = \frac\left(\ln\,x-\sum_^\frac\right)+ \sum_^ C_ \frac


See also

* *


References

* Milton Abramowitz and
Irene A. Stegun Irene Ann Stegun (February 9, 1919 – January 27, 2008) was an American mathematician at the National Bureau of Standards (NBS, now the National Institute of Standards and Technology) who edited a classic book of mathematical tables called '' ...
, ''
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables ''Abramowitz and Stegun'' (''AS'') is the informal name of a 1964 mathematical reference work edited by Milton Abramowitz and Irene Stegun of the United States National Bureau of Standards (NBS), now the ''National Institute of Standards and ...
'', 1964. A few integrals are listed o
page 69
{{Lists of integrals
Logarithmic functions In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...