HOME

TheInfoList



OR:

In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, Lipschitz continuity, named after German
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
Rudolf Lipschitz, is a strong form of
uniform continuity In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. I ...
for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. We have the following chain of strict inclusions for functions over a closed and bounded non-trivial interval of the real line: : Continuously differentiable ⊂ Lipschitz continuous ⊂ \alpha- Hölder continuous, where 0 < \alpha \leq 1. We also have : Lipschitz continuous ⊂ absolutely continuousuniformly continuous.


Definitions

Given two
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
s (''X'', ''d''''X'') and (''Y'', ''d''''Y''), where ''d''''X'' denotes the metric on the set ''X'' and ''d''''Y'' is the metric on set ''Y'', a function ''f'' : ''X'' → ''Y'' is called Lipschitz continuous if there exists a real constant ''K'' ≥ 0 such that, for all ''x''1 and ''x''2 in ''X'', : d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2). Any such ''K'' is referred to as a Lipschitz constant for the function ''f'' and ''f'' may also be referred to as K-Lipschitz. The smallest constant is sometimes called the (best) Lipschitz constant of ''f'' or the dilation or dilatation of ''f''. If ''K'' = 1 the function is called a short map, and if 0 ≤ ''K'' < 1 and ''f'' maps a metric space to itself, the function is called a contraction. In particular, a
real-valued function In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real ...
''f'' : ''R'' → ''R'' is called Lipschitz continuous if there exists a positive real constant K such that, for all real ''x''1 and ''x''2, : , f(x_1) - f(x_2), \le K , x_1 - x_2, . In this case, ''Y'' is the set of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s R with the standard metric ''d''''Y''(''y1'', ''y2'') = , ''y1'' − ''y2'', , and ''X'' is a subset of R. In general, the inequality is (trivially) satisfied if ''x''1 = ''x''2. Otherwise, one can equivalently define a function to be Lipschitz continuous
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bi ...
there exists a constant ''K'' ≥ 0 such that, for all ''x''1 ≠ ''x''2, :\frac\le K. For real-valued functions of several real variables, this holds if and only if the absolute value of the slopes of all secant lines are bounded by ''K''. The set of lines of slope ''K'' passing through a point on the graph of the function forms a circular cone, and a function is Lipschitz if and only if the graph of the function everywhere lies completely outside of this cone (see figure). A function is called locally Lipschitz continuous if for every ''x'' in ''X'' there exists a neighborhood ''U'' of ''x'' such that ''f'' restricted to ''U'' is Lipschitz continuous. Equivalently, if ''X'' is a locally compact metric space, then ''f'' is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of ''X''. In spaces that are not locally compact, this is a necessary but not a sufficient condition. More generally, a function ''f'' defined on ''X'' is said to be Hölder continuous or to satisfy a Hölder condition of order α > 0 on ''X'' if there exists a constant ''M'' ≥ 0 such that :d_Y(f(x), f(y)) \leq M d_X(x, y)^ for all ''x'' and ''y'' in ''X''. Sometimes a Hölder condition of order α is also called a uniform Lipschitz condition of order α > 0. For a real number ''K'' ≥ 1, if :\fracd_X(x_1,x_2) \le d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2)\quad\textx_1,x_2\in X, then ''f'' is called ''K''-bilipschitz (also written ''K''-bi-Lipschitz). We say ''f'' is bilipschitz or bi-Lipschitz to mean there exists such a ''K''. A bilipschitz mapping is injective, and is in fact a
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
onto its image. A bilipschitz function is the same thing as an injective Lipschitz function whose
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon ...
is also Lipschitz.


Examples

;Lipschitz continuous functions: ;Lipschitz continuous functions that are not everywhere differentiable: ;Lipschitz continuous functions that are everywhere differentiable but not continuously differentiable: ;Continuous functions that are not (globally) Lipschitz continuous: ;Differentiable functions that are not (locally) Lipschitz continuous: ;Analytic functions that are not (globally) Lipschitz continuous:


Properties

*An everywhere differentiable function ''g'' : R → R is Lipschitz continuous (with ''K'' = sup , ''g''′(''x''), ) if and only if it has bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is locally bounded as well. *A Lipschitz function ''g'' : R → R is absolutely continuous and therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides ...
zero. Its derivative is essentially bounded in magnitude by the Lipschitz constant, and for ''a'' < ''b'', the difference ''g''(''b'') − ''g''(''a'') is equal to the integral of the derivative ''g''′ on the interval 'a'', ''b'' **Conversely, if ''f'' : ''I'' → R is absolutely continuous and thus differentiable almost everywhere, and satisfies , ''f′''(''x''),  ≤ ''K'' for almost all ''x'' in ''I'', then ''f'' is Lipschitz continuous with Lipschitz constant at most ''K''. **More generally, Rademacher's theorem extends the differentiability result to Lipschitz mappings between Euclidean spaces: a Lipschitz map ''f'' : ''U'' → R''m'', where ''U'' is an open set in R''n'', is almost everywhere differentiable. Moreover, if ''K'' is the best Lipschitz constant of ''f'', then \, Df(x)\, \le K whenever the total derivative ''Df'' exists. *For a differentiable Lipschitz map f: U \to \R^m the inequality \, Df\, _\le K holds for the best Lipschitz constant K of f. If the domain U is convex then in fact \, Df\, _= K. *Suppose that is a sequence of Lipschitz continuous mappings between two metric spaces, and that all ''fn'' have Lipschitz constant bounded by some ''K''. If ''fn'' converges to a mapping ''f''
uniformly Uniform distribution may refer to: * Continuous uniform distribution * Discrete uniform distribution * Uniform distribution (ecology) * Equidistributed sequence In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ...
, then ''f'' is also Lipschitz, with Lipschitz constant bounded by the same ''K''. In particular, this implies that the set of real-valued functions on a compact metric space with a particular bound for the Lipschitz constant is a closed and convex subset of the
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
of continuous functions. This result does not hold for sequences in which the functions may have ''unbounded'' Lipschitz constants, however. In fact, the space of all Lipschitz functions on a compact metric space is a subalgebra of the Banach space of continuous functions, and thus dense in it, an elementary consequence of the Stone–Weierstrass theorem (or as a consequence of Weierstrass approximation theorem, because every polynomial is locally Lipschitz continuous). *Every Lipschitz continuous map is uniformly continuous, and hence '' a fortiori'' continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence. By the result of the previous paragraph, the limit function is also Lipschitz, with the same bound for the Lipschitz constant. In particular the set of all real-valued Lipschitz functions on a compact metric space ''X'' having Lipschitz constant ≤ ''K''  is a locally compact convex subset of the Banach space ''C''(''X''). *For a family of Lipschitz continuous functions ''f''α with common constant, the function \sup_\alpha f_\alpha (and \inf_\alpha f_\alpha) is Lipschitz continuous as well, with the same Lipschitz constant, provided it assumes a finite value at least at a point. *If ''U'' is a subset of the metric space ''M'' and ''f'' : ''U'' → R is a Lipschitz continuous function, there always exist Lipschitz continuous maps ''M'' → R which extend ''f'' and have the same Lipschitz constant as ''f'' (see also Kirszbraun theorem). An extension is provided by ::\tilde f(x):=\inf_\, :where ''k'' is a Lipschitz constant for ''f'' on ''U''.


Lipschitz manifolds

A Lipschitz structure on a topological manifold is defined using an atlas of charts whose transition maps are bilipschitz; this is possible because bilipschitz maps form a pseudogroup. Such a structure allows one to define locally Lipschitz maps between such manifolds, similarly to how one defines smooth maps between
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a col