In
mathematical logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
, the Lindenbaum–Tarski algebra (or Lindenbaum algebra) of a
logical theory
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, giving rise to a formal system that combines the language with deduct ...
''T'' consists of the
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of
sentences of the theory (i.e., the
quotient
In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
, under the
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
~ defined such that ''p'' ~ ''q'' exactly when ''p'' and ''q'' are provably equivalent in ''T''). That is, two sentences are equivalent if the theory ''T'' proves that each implies the other. The Lindenbaum–Tarski algebra is thus the
quotient algebra obtained by factoring the algebra of formulas by this
congruence relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
.
The algebra is named for
logician
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arg ...
s
Adolf Lindenbaum
Adolf Lindenbaum (12 June 1904 – August 1941) was a Polish-Jewish logician and mathematician best known for Lindenbaum's lemma and Lindenbaum–Tarski algebras.
Life
He was born and brought up in Warsaw. He earned a Ph.D. in 1928 un ...
and
Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
.
Starting in the academic year 1926-1927, Lindenbaum pioneered his method in
Jan Łukasiewicz
Jan Łukasiewicz (; 21 December 1878 – 13 February 1956) was a Polish logician and philosopher who is best known for Polish notation and Łukasiewicz logic. His work centred on philosophical logic, mathematical logic and history of logi ...
's mathematical logic seminar, and the method was popularized and generalized in subsequent decades through work
by Tarski.
The Lindenbaum–Tarski algebra is considered the origin of the modern
algebraic logic
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with Free variables and bound variables, free variables.
What is now usually called classical algebraic logic focuses on the identification and algebraic de ...
.
[; here: pages 1-2]
Operations
The operations in a Lindenbaum–Tarski algebra ''A'' are inherited from those in the underlying theory ''T''. These typically include
conjunction and
disjunction
In logic, disjunction (also known as logical disjunction, logical or, logical addition, or inclusive disjunction) is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is ...
, which are
well-defined
In mathematics, a well-defined expression or unambiguous expression is an expression (mathematics), expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined ...
on the equivalence classes. When
negation
In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
is also present in ''T'', then ''A'' is a
Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
, provided the logic is
classical. If the theory ''T'' consists of the
propositional tautologies, the Lindenbaum–Tarski algebra is the
free Boolean algebra generated by the
propositional variable
In mathematical logic, a propositional variable (also called a sentence letter, sentential variable, or sentential letter) is an input variable (that can either be true or false) of a truth function. Propositional variables are the basic building ...
s.
If ''T'' is closed for deduction, then the embedding of ''T/~'' in ''A'' is a
filter. Moreover, an
ultrafilter
In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
in A corresponds to a complete consistent theory, establishing the equivalence between
Lindenbaum's Lemma and the
Ultrafilter Lemma
In the mathematical field of set theory, an ultrafilter on a set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter on X and that is maximal with respect to incl ...
.
Related algebras
Heyting algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' call ...
s and
interior algebras are the Lindenbaum–Tarski algebras for
intuitionistic logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems ...
and the
modal logic
Modal logic is a kind of logic used to represent statements about Modality (natural language), necessity and possibility. In philosophy and related fields
it is used as a tool for understanding concepts such as knowledge, obligation, and causality ...
S4, respectively.
A logic for which Tarski's method is applicable, is called ''algebraizable''. There are however a number of logics where this is not the case, for instance the modal logics S1, S2, or S3, which lack the
rule of necessitation (⊢φ implying ⊢□φ), so ~ (defined above) is not a congruence (because ⊢φ→ψ does not imply ⊢□φ→□ψ). Another type of logic where Tarski's method is inapplicable is
relevance logic
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, b ...
s, because given two theorems an implication from one to the other may not itself be a theorem in a relevance logic.
[ The study of the algebraization process (and notion) as topic of interest by itself, not necessarily by Tarski's method, has led to the development of ]abstract algebraic logic
In mathematical logic, abstract algebraic logic is the study of the algebraization of deductive systems
arising as an abstraction of the well-known Lindenbaum–Tarski algebra, and how the resulting algebras are related to logical systems.Font, 200 ...
.
See also
*Algebraic semantics (mathematical logic)
In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras ...
*Leibniz operator In abstract algebraic logic, a branch of mathematical logic, the Leibniz operator is a tool used to classify deductive systems, which have a precise technical definition and capture a large number of logics. The Leibniz operator was introduced by Wi ...
*List of Boolean algebra topics
This is a list of topics around Boolean algebra and propositional logic.
Articles with a wide scope and introductions
* Algebra of sets
* Boolean algebra (structure)
* Boolean algebra
* Field of sets
* Logical connective
* Propo ...
References
*
{{DEFAULTSORT:Lindenbaum-Tarski algebra
Algebraic logic
Algebraic structures