
In physical science and
mathematics, Legendre polynomials (named after
Adrien-Marie Legendre
Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are nam ...
, who discovered them in 1782) are a system of complete and
orthogonal polynomial
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
The most widely used orthogonal polynomials are the cla ...
s, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.
Closely related to the Legendre polynomials are
associated Legendre polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
\left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0,
or equivalently ...
,
Legendre function
In physical science and mathematics, the Legendre functions , and associated Legendre functions , , and Legendre functions of the second kind, , are all solutions of Legendre's differential equation. The Legendre polynomials and the associated L ...
s, Legendre functions of the second kind, and
associated Legendre function
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
\left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0,
or equivalently ...
s.
Definition by construction as an orthogonal system
In this approach, the polynomials are defined as an orthogonal system with respect to the weight function
over the interval