Lead-206
   HOME

TheInfoList



OR:

Lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
(82Pb) has four
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
s: the
uranium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
(or radium series), the
actinium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
, and the
thorium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
, respectively; a fourth decay chain, the
neptunium series In nuclear science a decay chain refers to the predictable series of radioactive decay, radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radionuclide, Radioactive isotopes do not usually decay directly ...
, terminates with the
thallium Thallium is a chemical element; it has Symbol (chemistry), symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Che ...
isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See lead–lead dating and
uranium–lead dating Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routi ...
.) The longest-lived radioisotopes are 205Pb with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 17.3 million years and 202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, 210Pb with a half-life of 22.2 years, is useful for studying the
sedimentation Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to th ...
chronology of environmental samples on time scales shorter than 100 years. The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208Pb. (The more massive 209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.) 208Pb is also a doubly magic isotope, as it has 82
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and 126
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species. The four primordial isotopes of lead are all
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergo
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
and become isotopes of mercury which are themselves radioactive or observationally stable. In its fully ionized state, the
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
of isotope 210Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.


List of isotopes

, -id=Lead-178 , rowspan=2, 178Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 96 , rowspan=2, 178.003836(25) , rowspan=2, 250(80) μs , α , 174Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+? , 178Tl , -id=Lead-179 , 179Pb , , style="text-align:right" , 82 , style="text-align:right" , 97 , 179.002(87) , 2.7(2) ms , α , 175Hg , (9/2−) , , , -id=Lead-180 , 180Pb , , style="text-align:right" , 82 , style="text-align:right" , 98 , 179.997916(13) , 4.1(3) ms , α , 176Hg , 0+ , , , -id=Lead-181 , rowspan=2, 181Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 99 , rowspan=2, 180.996661(91) , rowspan=2, 39.0(8) ms , α , 177Hg , rowspan=2, (9/2−) , rowspan=2, , rowspan=2, , - , β+? , 181Tl , -id=Lead-182 , rowspan=2, 182Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 100 , rowspan=2, 181.992674(13) , rowspan=2, 55(5) ms , α , 178Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+? , 182Tl , -id=Lead-183 , rowspan=2, 183Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 101 , rowspan=2, 182.991863(31) , rowspan=2, 535(30) ms , α , 179Hg , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , β+? , 183Tl , -id=Lead-183m , rowspan=3 style="text-indent:1em" , 183mPb , rowspan=3, , rowspan=3 colspan="3" style="text-indent:2em" , 94(8) keV , rowspan=3, 415(20) ms , α , 179Hg , rowspan=3, 13/2+ , rowspan=3, , rowspan=3, , - , β+? , 183Tl , - , IT? , 183Pb , -id=Lead-184 , rowspan=2, 184Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 102 , rowspan=2, 183.988136(14) , rowspan=2, 490(25) ms , α (80%) , 180Hg , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+? (20%) , 184Tl , -id=Lead-185 , rowspan=2, 185Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 103 , rowspan=2, 184.987610(17) , rowspan=2, 6.3(4) s , β+ (66%) , 185Tl , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (34%) , 181Hg , -id=Lead-185m , rowspan=2 style="text-indent:1em" , 185mPbOrder of ground state and isomer is uncertain. , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 70(50) keV , rowspan=2, 4.07(15) s , α (50%) , 181Hg , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , β+? (50%) , 185Tl , -id=Lead-186 , rowspan=2, 186Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 104 , rowspan=2, 185.984239(12) , rowspan=2, 4.82(3) s , β+? (60%) , 186Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (40%) , 182Hg , -id=Lead-187 , rowspan=2, 187Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 105 , rowspan=2, 186.9839108(55) , rowspan=2, 15.2(3) s , β+ (90.5%) , 187Tl , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (9.5%) , 183Hg , -id=Lead-187m , rowspan=2 style="text-indent:1em" , 187mPb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 19(10) keV , rowspan=2, 18.3(3) s , β+ (88%) , 187Tl , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , α (12%) , 183Hg , -id=Lead-188 , rowspan=2, 188Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 106 , rowspan=2, 187.980879(11) , rowspan=2, 25.1(1) s , β+ (91.5%) , 188Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (8.5%) , 184Hg , -id=Lead-188m1 , style="text-indent:1em" , 188m1Pb , , colspan="3" style="text-indent:2em" , 2577.2(4) keV , 800(20) ns , IT , 188Pb , 8− , , , -id=Lead-188m2 , style="text-indent:1em" , 188m2Pb , , colspan="3" style="text-indent:2em" , 2709.8(5) keV , 94(12) ns , IT , 188Pb , 12+ , , , -id=Lead-188m3 , style="text-indent:1em" , 188m3Pb , , colspan="3" style="text-indent:2em" , 4783.4(7) keV , 440(60) ns , IT , 188Pb , (19−) , , , -id=Lead-189 , rowspan=2, 189Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 107 , rowspan=2, 188.980844(15) , rowspan=2, 39(8) s , β+ (99.58%) , 189Tl , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (0.42%) , 185Hg , -id=Lead-189m1 , rowspan=3 style="text-indent:1em" , 189m1Pb , rowspan=3, , rowspan=3 colspan="3" style="text-indent:2em" , 40(4) keV , rowspan=3, 50.5(21) s , β+ (99.6%) , 189Tl , rowspan=3, 13/2+ , rowspan=3, , rowspan=3, , - , α (0.4%) , 185Hg , - , IT? , 189Pb , -id=Lead-189m2 , style="text-indent:1em" , 189m2Pb , , colspan="3" style="text-indent:2em" , 2475(4) keV , 26(5) μs , IT , 189Pb , 31/2− , , , -id=Lead-190 , rowspan=2, 190Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 108 , rowspan=2, 189.978082(13) , rowspan=2, 71(1) s , β+ (99.60%) , 190Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.40%) , 186Hg , -id=Lead-190m1 , style="text-indent:1em" , 190m1Pb , , colspan="3" style="text-indent:2em" , 2614.8(8) keV , 150(14) ns , IT , 190Pb , 10+ , , , -id=Lead-190m2 , style="text-indent:1em" , 190m2Pb , , colspan="3" style="text-indent:2em" , 2665(50)# keV , 24.3(21) μs , IT , 190Pb , (12+) , , , -id=Lead-190m3 , style="text-indent:1em" , 190m3Pb , , colspan="3" style="text-indent:2em" , 2658.2(8) keV , 7.7(3) μs , IT , 190Pb , 11− , , , -id=Lead-191 , rowspan=2, 191Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 109 , rowspan=2, 190.9782165(71) , rowspan=2, 1.33(8) min , β+ (99.49%) , 191Tl , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (0.51%) , 187Hg , -id=Lead-191m1 , rowspan=2 style="text-indent:1em" , 191m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 58(10) keV , rowspan=2, 2.18(8) min , β+ (99.98%) , 191Tl , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , α (0.02%) , 187Hg , -id=Lead-191m2 , style="text-indent:1em" , 191m2Pb , , colspan="3" style="text-indent:2em" , 2659(10) keV , 180(80) ns , IT , 191Pb , 33/2+ , , , -id=Lead-192 , rowspan=2, 192Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 110 , rowspan=2, 191.9757896(61) , rowspan=2, 3.5(1) min , β+ (99.99%) , 192Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (0.0059%) , 188Hg , -id=Lead-192m1 , style="text-indent:1em" , 192m1Pb , , colspan="3" style="text-indent:2em" , 2581.1(1) keV , 166(6) ns , IT , 192Pb , 10+ , , , -id=Lead-192m2 , style="text-indent:1em" , 192m2Pb , , colspan="3" style="text-indent:2em" , 2625.1(11) keV , 1.09(4) μs , IT , 192Pb , 12+ , , , -id=Lead-192m3 , style="text-indent:1em" , 192m3Pb , , colspan="3" style="text-indent:2em" , 2743.5(4) keV , 756(14) ns , IT , 192Pb , 11− , , , -id=Lead-193 , 193Pb , , style="text-align:right" , 82 , style="text-align:right" , 111 , 192.976136(11) , 4# min , β+? , 193Tl , 3/2−# , , , -id=Lead-193m1 , style="text-indent:1em" , 193m1Pb , , colspan="3" style="text-indent:2em" , 93(12) keV , 5.8(2) min , β+ , 193Tl , 13/2+ , , , -id=Lead-193m2 , style="text-indent:1em" , 193m2Pb , , colspan="3" style="text-indent:2em" , 2707(13) keV , 180(15) ns , IT , 193Pb , 33/2+ , , , -id=Lead-194 , rowspan=2, 194Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 112 , rowspan=2, 193.974012(19) , rowspan=2, 10.7(6) min , β+ , 194Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (7.3×10−6%) , 190Hg , -id=Lead-194m1 , style="text-indent:1em" , 194m1Pb , , colspan="3" style="text-indent:2em" , 2628.1(4) keV , 370(13) ns , IT , 194Pb , 12+ , , , -id=Lead-194m2 , style="text-indent:1em" , 194m2Pb , , colspan="3" style="text-indent:2em" , 2933.0(4) keV , 133(7) ns , IT , 194Pb , 11− , , , -id=Lead-195 , 195Pb , , style="text-align:right" , 82 , style="text-align:right" , 113 , 194.9745162(55) , 15.0(14) min , β+ , 195Tl , 3/2- , , , -id=Lead-195m1 , rowspan=2 style="text-indent:1em" , 195m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 202.9(7) keV , rowspan=2, 15.0(12) min , β+ , 195Tl , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , IT? , 195Pb , -id=Lead-195m2 , style="text-indent:1em" , 195m2Pb , , colspan="3" style="text-indent:2em" , 1759.0(7) keV , 10.0(7) μs , IT , 195Pb , 21/2− , , , -id=Lead-195m3 , style="text-indent:1em" , 195m3Pb , , colspan="3" style="text-indent:2em" , 2901.7(8) keV , 95(20) ns , IT , 195Pb , 33/2+ , , , -id=Lead-196 , rowspan=2, 196Pb , rowspan=2, , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 114 , rowspan=2, 195.9727876(83) , rowspan=2, 37(3) min , β+ , 196Tl , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (<3×10−5%) , 192Hg , -id=Lead-196m1 , style="text-indent:1em" , 196m1Pb , , colspan="3" style="text-indent:2em" , 1797.51(14) keV , 140(14) ns , IT , 196Pb , 5− , , , -id=Lead-196m2 , style="text-indent:1em" , 196m2Pb , , colspan="3" style="text-indent:2em" , 2694.6(3) keV , 270(4) ns , IT , 196Pb , 12+ , , , -id=Lead-197 , 197Pb , , style="text-align:right" , 82 , style="text-align:right" , 115 , 196.9734347(52) , 8.1(17) min , β+ , 197Tl , 3/2− , , , -id=Lead-197m1 , rowspan=2 style="text-indent:1em" , 197m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 319.31(11) keV , rowspan=2, 42.9(9) min , β+ (81%) , 197Tl , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , IT (19%) , 197Pb , -id=Lead-197m2 , style="text-indent:1em" , 197m2Pb , , colspan="3" style="text-indent:2em" , 1914.10(25) keV , 1.15(20) μs , IT , 197Pb , 21/2− , , , -id=Lead-198 , 198Pb , , style="text-align:right" , 82 , style="text-align:right" , 116 , 197.9720155(94) , 2.4(1) h , β+ , 198Tl , 0+ , , , -id=Lead-198m1 , style="text-indent:1em" , 198m1Pb , , colspan="3" style="text-indent:2em" , 2141.4(4) keV , 4.12(7) μs , IT , 198Pb , 7− , , , -id=Lead-198m2 , style="text-indent:1em" , 198m2Pb , , colspan="3" style="text-indent:2em" , 2231.4(5) keV , 137(10) ns , IT , 198Pb , 9− , , , -id=Lead-198m3 , style="text-indent:1em" , 198m3Pb , , colspan="3" style="text-indent:2em" , 2821.7(6) keV , 212(4) ns , IT , 198Pb , 12+ , , , -id=Lead-199 , 199Pb , , style="text-align:right" , 82 , style="text-align:right" , 117 , 198.9729126(73) , 90(10) min , β+ , 199Tl , 3/2− , , , -id=Lead-199m1 , rowspan=2 style="text-indent:1em" , 199m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 429.5(27) keV , rowspan=2, 12.2(3) min , IT , 199Pb , rowspan=2, (13/2+) , rowspan=2, , rowspan=2, , - , β+? , 199Tl , -id=Lead-199m2 , style="text-indent:1em" , 199m2Pb , , colspan="3" style="text-indent:2em" , 2563.8(27) keV , 10.1(2) μs , IT , 199Pb , (29/2−) , , , -id=Lead-200 , 200Pb , , style="text-align:right" , 82 , style="text-align:right" , 118 , 199.971819(11) , 21.5(4) h , EC , 200Tl , 0+ , , , -id=Lead-200m1 , style="text-indent:1em" , 200m1Pb , , colspan="3" style="text-indent:2em" , 2183.3(11) keV , 456(6) ns , IT , 200Pb , (9−) , , , -id=Lead-200m2 , style="text-indent:1em" , 200m2Pb , , colspan="3" style="text-indent:2em" , 3005.8(12) keV , 198(3) ns , IT , 200Pb , 12+) , , , -id=Lead-201 , 201Pb , , style="text-align:right" , 82 , style="text-align:right" , 119 , 200.972870(15) , 9.33(3) h , β+ , 201Tl , 5/2− , , , -id=Lead-201m1 , rowspan=2 style="text-indent:1em" , 201m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 629.1(3) keV , rowspan=2, 60.8(18) s , IT , 201Pb , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , β+? , 201Tl , -id=Lead-201m2 , style="text-indent:1em" , 201m2Pb , , colspan="3" style="text-indent:2em" , 2953(20) keV , 508(3) ns , IT , 201Pb , (29/2−) , , , -id=Lead-202 , 202Pb , , style="text-align:right" , 82 , style="text-align:right" , 120 , 201.9721516(41) , 5.25(28)×104 y , EC , 202Tl , 0+ , , , -id=Lead-202m1 , rowspan=2 style="text-indent:1em" , 202m1Pb , rowspan=2, , rowspan=2 colspan="3" style="text-indent:2em" , 2169.85(8) keV , rowspan=2, 3.54(2) h , IT (90.5%) , 202Pb , rowspan=2, 9− , rowspan=2, , rowspan=2, , - , β+ (9.5%) , 202Tl , -id=Lead-202m2 , style="text-indent:1em" , 202m2Pb , , colspan="3" style="text-indent:2em" , 4140(50)# keV , 100(3) ns , IT , 202Pb , 16+ , , , -id=Lead-202m3 , style="text-indent:1em" , 202m3Pb , , colspan="3" style="text-indent:2em" , 5300(50)# keV , 108(3) ns , IT , 202Pb , 19− , , , -id=Lead-203 , 203Pb , , style="text-align:right" , 82 , style="text-align:right" , 121 , 202.9733906(70) , 51.924(15) h , EC , 203Tl , 5/2− , , , -id=Lead-203m1 , style="text-indent:1em" , 203m1Pb , , colspan="3" style="text-indent:2em" , 825.2(3) keV , 6.21(8) s , IT , 203Pb , 13/2+ , , , -id=Lead-203m2 , style="text-indent:1em" , 203m2Pb , , colspan="3" style="text-indent:2em" , 2949.2(4) keV , 480(7) ms , IT , 203Pb , 29/2− , , , -id=Lead-203m3 , style="text-indent:1em" , 203m3Pb , , colspan="3" style="text-indent:2em" , 2970(50)# keV , 122(4) ns , IT , 203Pb , 25/2−# , , , -id=Lead-204 , 204PbUsed in lead–lead dating , , style="text-align:right" , 82 , style="text-align:right" , 122 , 203.9730435(12) , colspan="3" style="text-align:center;",
Observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
, 0+ , 0.014(6) , 0.0000–0.0158 , -id=Lead-204m1 , style="text-indent:1em" , 204m1Pb , , colspan="3" style="text-indent:2em" , 1274.13(5) keV , 265(6) ns , IT , 204Pb , 4+ , , , -id=Lead-204m2 , style="text-indent:1em" , 204m2Pb , , colspan="3" style="text-indent:2em" , 2185.88(8) keV , 66.93(10) min , IT , 204Pb , 9− , , , -id=Lead-204m3 , style="text-indent:1em" , 204m3Pb , , colspan="3" style="text-indent:2em" , 2264.42(6) keV , 490(70) ns , IT , 204Pb , 7− , , , -id=Lead-205 , 205Pb , , style="text-align:right" , 82 , style="text-align:right" , 123 , 204.9744817(12) , 1.70(9)×107 y , EC , 205Tl , 5/2− , , , -id=Lead-205m1 , style="text-indent:1em" , 205m1Pb , , colspan="3" style="text-indent:2em" , 2.329(7) keV , 24.2(4) μs , IT , 205Pb , 1/2− , , , -id=Lead-205m2 , style="text-indent:1em" , 205m2Pb , , colspan="3" style="text-indent:2em" , 1013.85(3) keV , 5.55(2) ms , IT , 205Pb , 13/2+ , , , -id=Lead-205m3 , style="text-indent:1em" , 205m3Pb , , colspan="3" style="text-indent:2em" , 3195.8(6) keV , 217(5) ns , IT , 205Pb , 25/2− , , , - , 206PbFinal
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 4n+2
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
(the Radium or Uranium series)
, Radium G , style="text-align:right" , 82 , style="text-align:right" , 124 , 205.9744652(12) , colspan="3" style="text-align:center;", Observationally stable , 0+ , 0.241(30) , 0.0190–0.8673 , -id=Lead-206m1 , style="text-indent:1em" , 206m1Pb , , colspan="3" style="text-indent:2em" , 2200.16(4) keV , 125(2) μs , IT , 206Pb , 7− , , , -id=Lead-206m2 , style="text-indent:1em" , 206m2Pb , , colspan="3" style="text-indent:2em" , 4027.3(7) keV , 202(3) ns , IT , 206Pb , 12+ , , , - , 207PbFinal decay product of 4n+3 decay chain (the
Actinium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
)
, Actinium D , style="text-align:right" , 82 , style="text-align:right" , 125 , 206.9758968(12) , colspan="3" style="text-align:center;", Observationally stable , 1/2− , 0.221(50) , 0.0035–0.2351 , -id=Lead-207m , style="text-indent:1em" , 207mPb , , colspan="3" style="text-indent:2em" , 1633.356(4) keV , 806(5) ms , IT , 207Pb , 13/2+ , , , -id=Lead-208 , 208PbHeaviest observationally stable nuclide; final decay product of 4n decay chain (the
Thorium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
)
, Thorium D , style="text-align:right" , 82 , style="text-align:right" , 126 , 207.9766520(12) , colspan="3" style="text-align:center;", Observationally stable , 0+ , 0.524(70) , 0.0338–0.9775 , -id=Lead-208m , style="text-indent:1em" , 208mPb , , colspan="3" style="text-indent:2em" , 4895.23(5) keV , 535(35) ns , IT , 208Pb , 10+ , , , -id=Lead-209 , 209Pb , , style="text-align:right" , 82 , style="text-align:right" , 127 , 208.9810900(19) , 3.235(5) h , β , ''209Bi'' , 9/2+ , TraceIntermediate decay product of 237Np , , -id=Lead-210 , rowspan=2, 210Pb , rowspan=2, Radium D
Radiolead
Radio-lead , rowspan=2 style="text-align:right" , 82 , rowspan=2 style="text-align:right" , 128 , rowspan=2, 209.9841884(16) , rowspan=2, 22.20(22) y , β (100%) , 210Bi , rowspan=2, 0+ , rowspan=2, TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 238U
, rowspan=2, , - , α (1.9×10−6%) , 206Hg , -id=Lead-210m1 , style="text-indent:1em" , 210m1Pb , , colspan="3" style="text-indent:2em" , 1194.61(18) keV , 92(10) ns , IT , 210Pb , 6+ , , , -id=Lead-210m2 , style="text-indent:1em" , 210m2Pb , , colspan="3" style="text-indent:2em" , 1274.8(3) keV , 201(17) ns , IT , 210Pb , 8+ , , , -id=Lead-211 , 211Pb , Actinium B , style="text-align:right" , 82 , style="text-align:right" , 129 , 210.9887353(24) , 36.1628(25) min , β , 211Bi , 9/2+ , TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 235U
, , -id=Lead-211m , style="text-indent:1em" , 211mPb , , colspan="3" style="text-indent:2em" , 1719(23) keV , 159(28) ns , IT , 211Pb , (27/2+) , , , - , 212Pb , Thorium B , style="text-align:right" , 82 , style="text-align:right" , 130 , 211.9918959(20) , 10.627(6) h , β , 212Bi , 0+ , TraceIntermediate
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
of 232Th
, , -id=Lead-212m , style="text-indent:1em" , 212mPb , , colspan="3" style="text-indent:2em" , 1335(2) keV , 6.0(8) μs , IT , 212Pb , 8+# , , , -id=Lead-213 , 213Pb , , style="text-align:right" , 82 , style="text-align:right" , 131 , 212.9965608(75) , 10.2(3) min , β , 213Bi , (9/2+) , Trace , , -id=Lead-213m , style="text-indent:1em" , 213mPb , , colspan="3" style="text-indent:2em" , 1331.0(17) keV , 260(20) ns , IT , 213Pb , (21/2+) , , , -id=Lead-214 , 214Pb , Radium B , style="text-align:right" , 82 , style="text-align:right" , 132 , 213.9998035(21) , 27.06(7) min , β , 214Bi , 0+ , Trace , , -id=Lead-214m , style="text-indent:1em" , 214mPb , , colspan="3" style="text-indent:2em" , 1420(20) keV , 6.2(3) μs , IT , 214Pb , 8+# , , , -id=Lead-215 , 215Pb , , style="text-align:right" , 82 , style="text-align:right" , 133 , 215.004662(57) , 142(11) s , β , 215Bi , 9/2+# , , , -id=Lead-216 , 216Pb , , style="text-align:right" , 82 , style="text-align:right" , 134 , 216.00806(22)# , 1.66(20) min , β , 216Bi , 0+ , , , -id=Lead-216m , style="text-indent:1em" , 216mPb , , colspan="3" style="text-indent:2em" , 1514(20) keV , 400(40) ns , IT , 216Pb , 8+# , , , -id=Lead-217 , 217Pb , , style="text-align:right" , 82 , style="text-align:right" , 135 , 217.01316(32)# , 19.9(53) s , β , 217Bi , 9/2+# , , , -id=Lead-218 , 218Pb , , style="text-align:right" , 82 , style="text-align:right" , 136 , 218.01678(32)# , 14.8(68) s , β , 218Bi , 0+ , , , -id=Lead-219 , 219Pb , , style="text-align:right" , 82 , style="text-align:right" , 137 , 219.02214(43)# , 3# s
300 ns, β? , 219Bi , 11/2+# , , , -id=Lead-220 , 220Pb , , style="text-align:right" , 82 , style="text-align:right" , 138 , 220.02591(43)# , 1# s
300 ns, β? , 220Bi , 0+ , ,


Lead-206

206Pb is the final step in the decay chain of 238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of 238U will decay in a sequence of steps culminating in 206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of 234U is 245,500 years). Once this stabilized system is reached, the ratio of 238U to 206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant. Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
, and the much rarer 206Tl (radium EII) by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. Lead-206 has been proposed for use in fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve neutron economy and greatly suppress unwanted production of highly radioactive byproducts.


Lead-204, -207, and -208

204Pb is entirely primordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere. Any excess lead-206, -207, and -208 is thus assumed to be
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
in origin, allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes. 207Pb is the end of the
actinium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
from 235U. 208Pb is the end of the
thorium series In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
from 232Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores. 208Pb is the heaviest known stable nuclide and also the heaviest known doubly magic nucleus, as ''Z'' = 82 and ''N'' = 126 correspond to closed nuclear shells. As a consequence of this particularly stable configuration, its neutron capture cross section is very low (even lower than that of
deuterium Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
in the thermal spectrum), making it of interest for
lead-cooled fast reactor The lead-cooled fast reactor is a nuclear reactor design that uses molten lead or lead-bismuth eutectic as its coolant. These materials can be used as the primary coolant because they have low neutron absorption and relatively low melting poi ...
s. In 2025 a published study suggested that the nucleus of 208Pb is not perfectly spherical as previously believed.


Lead-212

Lead-212 is a radioactive isotope of lead that has gained significant attention in nuclear medicine, particularly in targeted alpha therapy (TAT). This isotope is part of the
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
of primordial
thorium-232 Thorium-232 () is the main naturally occurring isotope of thorium, with a relative abundance of 99.98%. It has a half life of 14.05 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228; its de ...
. Lead-212 is characterized by its unstable nuclear configuration and undergoes radioactive decay through beta emission to form bismuth-212, which further decays to emit alpha particles. This decay chain is an in vivo generator system of alpha particles that can be utilized for therapeutic purposes, particularly targeted alpha therapy, by delivering potent, localized radiation to cancer cells.


See also

Daughter products other than lead * Isotopes of bismuth * Isotopes of thallium * Isotopes of mercury


References


Sources

* Isotope masses from: * Half-life, spin, and isomer data selected from the following sources. * * * {{Authority control Lead
Lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...