In
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
and
machine learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task ( ...
, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) is a
regression analysis method that performs both
variable selection and
regularization
Regularization may refer to:
* Regularization (linguistics)
* Regularization (mathematics)
* Regularization (physics)
* Regularization (solid modeling)
* Regularization Law, an Israeli law intended to retroactively legalize settlements
See also ...
in order to enhance the prediction accuracy and interpretability of the resulting
statistical model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repre ...
. The lasso method assumes that the coefficients of the linear model are sparse, meaning that few of them are non-zero. It was originally introduced in
geophysics
Geophysics () is a subject of natural science concerned with the physical processes and Physical property, properties of Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists conduct i ...
,
and later by
Robert Tibshirani,
who coined the term.
Lasso was originally formulated for
linear regression
In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
models. This simple case reveals a substantial amount about the estimator. These include its relationship to
ridge regression
Ridge regression (also known as Tikhonov regularization, named for Andrey Tikhonov) is a method of estimating the coefficients of multiple- regression models in scenarios where the independent variables are highly correlated. It has been used in m ...
and
best subset selection and the connections between lasso coefficient estimates and so-called soft thresholding. It also reveals that (like standard linear regression) the coefficient estimates do not need to be unique if
covariate
A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function ...
s are
collinear
In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, t ...
.
Though originally defined for linear regression, lasso regularization is easily extended to other statistical models including
generalized linear model
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a ''link function'' and by ...
s,
generalized estimating equation
In statistics, a generalized estimating equation (GEE) is used to estimate the parameters of a generalized linear model with a possible unmeasured correlation between observations from different timepoints.
Regression beta coefficient estimates ...
s,
proportional hazards model
Proportional hazards models are a class of survival models in statistics. Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional haz ...
s, and
M-estimator
In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estim ...
s.
Lasso's ability to perform subset selection relies on the form of the constraint and has a variety of interpretations including in terms of
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
,
Bayesian statistics
Bayesian statistics ( or ) is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about ...
and
convex analysis
Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex optimization, convex minimization, a subdomain of optimization (mathematics), optimization theor ...
.
The LASSO is closely related to
basis pursuit denoising.
History
Lasso was introduced in order to improve the prediction accuracy and interpretability of regression models. It selects a reduced set of the known covariates for use in a model.
Lasso was developed independently in geophysics literature in 1986, based on prior work that used the
penalty
Penalty, The Penalty, Penalization, Penalisation, Penalize or Penalise may refer to:
Sports
* Foul (sports)
** Penalty (golf)
** Penalty (gridiron football)
** Penalty (ice hockey)
** Penalty (rugby)
** Penalty (rugby union)
** Penalty kick (assoc ...
for both fitting and penalization of the coefficients. Statistician
Robert Tibshirani independently rediscovered and popularized it in 1996, based on
Breiman's nonnegative garrote.
Prior to lasso, the most widely used method for choosing covariates was
stepwise selection. That approach only improves prediction accuracy in certain cases, such as when only a few covariates have a strong relationship with the outcome. However, in other cases, it can increase prediction error.
At the time,
ridge regression
Ridge regression (also known as Tikhonov regularization, named for Andrey Tikhonov) is a method of estimating the coefficients of multiple- regression models in scenarios where the independent variables are highly correlated. It has been used in m ...
was the most popular technique for improving prediction accuracy. Ridge regression improves prediction error by
shrinking the sum of the squares of the
regression coefficients
In statistics, linear regression is a model that estimates the relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable i ...
to be less than a fixed value in order to reduce
overfitting
In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfi ...
, but it does not perform covariate selection and therefore does not help to make the model more interpretable.
Lasso achieves both of these goals by forcing the sum of the absolute value of the regression coefficients to be less than a fixed value, which forces certain coefficients to zero, excluding them from impacting prediction. This idea is similar to ridge regression, which also shrinks the size of the coefficients; however, ridge regression does not set coefficients to zero (and, thus, does not perform
variable selection).
Basic form
Least squares
Consider a sample consisting of ''N'' cases, each of which consists of ''p''
covariate
A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function ...
s and a single outcome. Let
be the outcome and
be the covariate vector for the ''i''
th case. Then the objective of lasso is to solve:
subject to
Here
is the constant coefficient,
is the coefficient vector, and
is a prespecified free parameter that determines the degree of regularization.
Letting
be the covariate matrix, so that
and
is the ''i''
th row of
, the expression can be written more compactly as
where
is the standard
norm.
Denoting the scalar mean of the data points
by
and the mean of the response variables
by
, the resulting estimate for
is
, so that
and therefore it is standard to work with variables that have been made zero-mean. Additionally, the covariates are typically
standardized
Standardization (American English) or standardisation (British English) is the process of implementing and developing technical standards based on the consensus of different parties that include firms, users, interest groups, standards organiza ...
so that the solution does not depend on the measurement scale.
It can be helpful to rewrite
in the so-called
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
form
where the exact relationship between
and
is data dependent.
Orthonormal covariates
Some basic properties of the lasso estimator can now be considered.
Assuming first that the covariates are
orthonormal
In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpe ...
so that
where
is the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
, or, equivalently,
then using
subgradient methods
Subgradient methods are convex optimization methods which use subderivatives. Originally developed by Naum Z. Shor and others in the 1960s and 1970s, subgradient methods are convergent when applied even to a non-differentiable objective function. ...
it can be shown that
where
is referred to as the ''soft thresholding operator'', since it translates values towards zero (making them exactly zero in the limit as they themselves approach zero) instead of setting smaller values to zero and leaving larger ones untouched as the ''hard thresholding operator'', often denoted
would.
In ridge regression the objective is to minimize
Using
and the ridge regression formula:
yields:
Ridge regression shrinks all coefficients by a uniform factor of
and does not set any coefficients to zero.
It can also be compared to regression with
best subset selection, in which the goal is to minimize
where
is the "
norm", which is defined as
if exactly components of are nonzero. In this case, it can be shown that
where
is again the hard thresholding operator and
is an
indicator function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator functio ...
(it is if its argument is true and otherwise).
Therefore, the lasso estimates share features of both ridge and best subset selection regression since they both shrink the magnitude of all the coefficients, like ridge regression and set some of them to zero, as in the best subset selection case. Additionally, while ridge regression scales all of the coefficients by a constant factor, lasso instead translates the coefficients towards zero by a constant value and sets them to zero if they reach it.
Correlated covariates
In one special case two covariates, say ''j'' and ''k'', are identical for each observation, so that
, where
. Then the values of
and
that minimize the lasso objective function are not uniquely determined. In fact, if some
in which
, then if
replacing
by
and
by
, while keeping all the other
fixed, gives a new solution, so the lasso objective function then has a continuum of valid minimizers.
Several variants of the lasso, including the
Elastic net regularization
In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the ''L''1 and ''L''2 penalties of the lasso and ridge methods.
Nevertheless, el ...
, have been designed to address this shortcoming.
General form
Lasso regularization can be extended to other objective functions such as those for
generalized linear model
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a ''link function'' and by ...
s,
generalized estimating equation
In statistics, a generalized estimating equation (GEE) is used to estimate the parameters of a generalized linear model with a possible unmeasured correlation between observations from different timepoints.
Regression beta coefficient estimates ...
s,
proportional hazards model
Proportional hazards models are a class of survival models in statistics. Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional haz ...
s, and
M-estimator
In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estim ...
s.
Given the objective function
the lasso regularized version of the estimator ''s'' the solution to
where only
is penalized while
is free to take any allowed value, just as
was not penalized in the basic case.
Interpretations
Geometric interpretation
Lasso can set coefficients to zero, while the superficially similar ridge regression cannot. This is due to the difference in the shape of their constraint boundaries. Both lasso and ridge regression can be interpreted as minimizing the same objective function
but with respect to different constraints:
for lasso and
for ridge. The figure shows that the constraint region defined by the
norm is a square rotated so that its corners lie on the axes (in general a
cross-polytope
In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a reg ...
), while the region defined by the
norm is a circle (in general an
''n''-sphere), which is
rotationally invariant and, therefore, has no corners. As seen in the figure, a convex object that lies tangent to the boundary, such as the line shown, is likely to encounter a corner (or a higher-dimensional equivalent) of a hypercube, for which some components of
are identically zero, while in the case of an ''n''-sphere, the points on the boundary for which some of the components of
are zero are not distinguished from the others and the convex object is no more likely to contact a point at which some components of
are zero than one for which none of them are.
Making λ easier to interpret with an accuracy-simplicity tradeoff
The lasso can be rescaled so that it becomes easy to anticipate and influence the degree of shrinkage associated with a given value of
.
It is assumed that
is standardized with z-scores and that
is centered (zero mean). Let
represent the hypothesized regression coefficients and let
refer to the data-optimized ordinary least squares solutions. We can then define the
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
as a tradeoff between the in-sample accuracy of the data-optimized solutions and the simplicity of sticking to the hypothesized values. This results in
where
is specified below and the "prime" symbol stands for transpose. The first fraction represents relative accuracy, the second fraction relative simplicity, and
balances between the two.

Given a single regressor, relative simplicity can be defined by specifying
as
, which is the maximum amount of deviation from
when
. Assuming that
, the solution path can be defined in terms of
:
If
, the ordinary least squares solution (OLS) is used. The hypothesized value of
is selected if
is bigger than
. Furthermore, if
, then
represents the proportional influence of
. In other words,
measures in percentage terms the minimal amount of influence of the hypothesized value relative to the data-optimized OLS solution.
If an
-norm is used to penalize deviations from zero given a single regressor, the solution path is given by
Like
,
moves in the direction of the point
when
is close to zero; but unlike
, the influence of
diminishes in
if
increases (see figure).
Given multiple regressors, the moment that a parameter is activated (i.e. allowed to deviate from
) is also determined by a regressor's contribution to
accuracy. First,
An
of 75% means that in-sample accuracy improves by 75% if the unrestricted OLS solutions are used instead of the hypothesized
values. The individual contribution of deviating from each hypothesis can be computed with the
x
matrix
where
. If
when
is computed, then the diagonal elements of
sum to
. The diagonal
values may be smaller than 0 or, less often, larger than 1. If regressors are uncorrelated, then the
diagonal element of
simply corresponds to the
value between
and
.
A rescaled version of the adaptive lasso of can be obtained by setting
.
If regressors are uncorrelated, the moment that the
parameter is activated is given by the
diagonal element of
. Assuming for convenience that
is a vector of zeros,
That is, if regressors are uncorrelated,
again specifies the minimal influence of
. Even when regressors are correlated, the first time that a regression parameter is activated occurs when
is equal to the highest diagonal element of
.
These results can be compared to a rescaled version of the lasso by defining
, which is the average absolute deviation of
from
. Assuming that regressors are uncorrelated, then the moment of activation of the
regressor is given by
For
, the moment of activation is again given by
. If
is a vector of zeros and a subset of
relevant parameters are equally responsible for a perfect fit of
, then this subset is activated at a
value of
. The moment of activation of a relevant regressor then equals
. In other words, the inclusion of irrelevant regressors delays the moment that relevant regressors are activated by this rescaled lasso. The adaptive lasso and the lasso are special cases of a '1ASTc' estimator. The latter only groups parameters together if the absolute correlation among regressors is larger than a user-specified value.
Bayesian interpretation
Just as ridge regression can be interpreted as linear regression for which the coefficients have been assigned normal
prior distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the ...
s, lasso can be interpreted as linear regression for which the coefficients have
Laplace prior distributions. The Laplace distribution is sharply
peaked at zero (its first derivative is discontinuous at zero) and it concentrates its probability mass closer to zero than does the normal distribution. This provides an alternative explanation of why lasso tends to set some coefficients to zero, while ridge regression does not.
Convex relaxation interpretation
Lasso can also be viewed as a convex relaxation of the best subset selection regression problem, which is to find the subset of
covariates that results in the smallest value of the objective function for some fixed
, where n is the total number of covariates. The "
norm",
, (the number of nonzero entries of a vector), is the limiting case of "
norms", of the form
(where the quotation marks signify that these are not really norms for
since
is not convex for
, so the triangle inequality does not hold). Therefore, since p = 1 is the smallest value for which the "
norm" is convex (and therefore actually a norm), lasso is, in some sense, the best convex approximation to the best subset selection problem, since the region defined by
is the
convex hull
In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, ...
of the region defined by
for
.
Generalizations
Lasso variants have been created in order to remedy limitations of the original technique and to make the method more useful for particular problems. Almost all of these focus on respecting or exploiting dependencies among the covariates.
Elastic net regularization
In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the ''L''1 and ''L''2 penalties of the lasso and ridge methods.
Nevertheless, el ...
adds an additional ridge regression-like penalty that improves performance when the number of predictors is larger than the sample size, allows the method to select strongly correlated variables together, and improves overall prediction accuracy.
Group lasso allows groups of related covariates to be selected as a single unit, which can be useful in settings where it does not make sense to include some covariates without others.
Further extensions of group lasso perform variable selection within individual groups (sparse group lasso) and allow overlap between groups (overlap group lasso).
[Puig, Arnau Tibau, Ami Wiesel, and Alfred O. Hero III.]
A Multidimensional Shrinkage-Thresholding Operator
. Proceedings of the 15th workshop on Statistical Signal Processing, SSP'09, IEEE, pp. 113–116.[Jacob, Laurent, Guillaume Obozinski, and Jean-Philippe Vert.]
Group Lasso with Overlap and Graph LASSO
. Appearing in Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada, 2009.
Fused lasso can account for the spatial or temporal characteristics of a problem, resulting in estimates that better match system structure.
Lasso-regularized models can be fit using techniques including
subgradient methods
Subgradient methods are convex optimization methods which use subderivatives. Originally developed by Naum Z. Shor and others in the 1960s and 1970s, subgradient methods are convergent when applied even to a non-differentiable objective function. ...
,
least-angle regression
In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.
Suppose we expect a response variab ...
(LARS), and
proximal gradient methods. Determining the optimal value for the regularization parameter is an important part of ensuring that the model performs well; it is typically chosen using
cross-validation.
Elastic net
In 2005, Zou and Hastie introduced the
elastic net.
When ''p'' > ''n'' (the number of covariates is greater than the sample size) lasso can select only ''n'' covariates (even when more are associated with the outcome) and it tends to select one covariate from any set of highly correlated covariates. Additionally, even when ''n'' > ''p'', ridge regression tends to perform better given strongly correlated covariates.
The elastic net extends lasso by adding an additional
penalty term giving
which is equivalent to solving
This problem can be written in a simple lasso form
letting
Then
, which, when the covariates are orthogonal to each other, gives
So the result of the elastic net penalty is a combination of the effects of the lasso and ridge penalties.
Returning to the general case, the fact that the penalty function is now strictly convex means that if
,
, which is a change from lasso.
In general, if
is the sample correlation matrix because the
's are normalized.
Therefore, highly correlated covariates tend to have similar regression coefficients, with the degree of similarity depending on both
and
, which is different from lasso. This phenomenon, in which strongly correlated covariates have similar regression coefficients, is referred to as the grouping effect. Grouping is desirable since, in applications such as tying genes to a disease, finding all the associated covariates is preferable, rather than selecting one from each set of correlated covariates, as lasso often does.
In addition, selecting only one from each group typically results in increased prediction error, since the model is less robust (which is why ridge regression often outperforms lasso).
Group lasso
In 2006, Yuan and Lin introduced the group lasso to allow predefined groups of covariates to jointly be selected into or out of a model.
This is useful in many settings, perhaps most obviously when a categorical variable is coded as a collection of binary covariates. In this case, group lasso can ensure that all the variables encoding the categorical covariate are included or excluded together. Another setting in which grouping is natural is in biological studies. Since genes and proteins often lie in known pathways, which pathways are related to an outcome may be more significant than whether individual genes are. The objective function for the group lasso is a natural generalization of the standard lasso objective
where the
design matrix
In statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual o ...
and covariate vector
have been replaced by a collection of design matrices
and covariate vectors
, one for each of the J groups. Additionally, the penalty term is now a sum over
norms defined by the positive definite matrices
. If each covariate is in its own group and
, then this reduces to the standard lasso, while if there is only a single group and
, it reduces to ridge regression. Since the penalty reduces to an
norm on the subspaces defined by each group, it cannot select out only some of the covariates from a group, just as ridge regression cannot. However, because the penalty is the sum over the different subspace norms, as in the standard lasso, the constraint has some non-differential points, which correspond to some subspaces being identically zero. Therefore, it can set the coefficient vectors corresponding to some subspaces to zero, while only shrinking others. However, it is possible to extend the group lasso to the so-called sparse group lasso, which can select individual covariates within a group, by adding an additional
penalty to each group subspace.
Another extension, group lasso with overlap allows covariates to be shared across groups, e.g., if a gene were to occur in two pathways.
The "gglasso" package by in R, allows for fast and efficient implementation of Group LASSO.
Fused lasso
In some cases, the phenomenon under study may have important spatial or temporal structure that must be considered during analysis, such as time series or image-based data. In 2005, Tibshirani and colleagues introduced the fused lasso to extend the use of lasso to this type of data.
The fused lasso objective function is
The first constraint is the lasso constraint, while the second directly penalizes large changes with respect to the temporal or spatial structure, which forces the coefficients to vary smoothly to reflect the system's underlying logic. Clustered lasso
is a generalization of fused lasso that identifies and groups relevant covariates based on their effects (coefficients). The basic idea is to penalize the differences between the coefficients so that nonzero ones cluster. This can be modeled using the following regularization:
In contrast, variables can be clustered into highly correlated groups, and then a single representative covariate can be extracted from each cluster.
Algorithms exist that solve the fused lasso problem, and some generalizations of it. Algorithms can solve it exactly in a finite number of operations.
Quasi-norms and bridge regression

Lasso, elastic net, group and fused lasso construct the penalty functions from the
and
norms (with weights, if necessary). The bridge regression utilises general
norms (
) and quasinorms (
).
[Fu, Wenjiang J. 1998. �]
The Bridge versus the Lasso
��. Journal of Computational and Graphical Statistics 7 (3). Taylor & Francis: 397-416. For example, for ''p''=1/2 the analogue of lasso objective in the Lagrangian form is to solve
where
It is claimed that the fractional quasi-norms
(
) provide more meaningful results in data analysis both theoretically and empirically. The non-convexity of these quasi-norms complicates the optimization problem. To solve this problem, an expectation-minimization procedure is developed
[Gorban, A.N.; Mirkes, E.M.; Zinovyev, A. (2016)]
Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.
Neural Networks, 84, 28-38. and implemented
[Mirkes E.M]
PQSQ-regularized-regression repository
GitHub. for minimization of function
where
is an arbitrary concave monotonically increasing function (for example,
gives the lasso penalty and
gives the
penalty).
The efficient algorithm for minimization is based on piece-wise
quadratic approximation
In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the k-th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation a ...
of subquadratic growth (PQSQ).
Adaptive lasso
The adaptive lasso was introduced by Zou in 2006 for linear regression
and by Zhang and Lu in 2007 for proportional hazards regression.
Prior lasso
The prior lasso was introduced for generalized linear models by Jiang et al. in 2016 to incorporate prior information, such as the importance of certain covariates.
In prior lasso, such information is summarized into pseudo responses (called prior responses)
and then an additional criterion function is added to the usual objective function with a lasso penalty. Without loss of generality, in linear regression, the new objective function can be written as
which is equivalent to
the usual lasso objective function with the responses
being replaced by a weighted average of the observed responses and the prior responses
(called the adjusted response values by the prior information).
In prior lasso, the parameter
is called a balancing parameter, in that it balances the relative importance of the data and the prior information. In the extreme case of
, prior lasso is reduced to lasso. If
, prior lasso will solely rely on the prior information to fit the model. Furthermore, the balancing parameter
has another appealing interpretation: it controls the variance of
in its prior distribution from a Bayesian viewpoint.
Prior lasso is more efficient in parameter estimation and prediction (with a smaller estimation error and prediction error) when the prior information is of high quality, and is robust to the low quality prior information with a good choice of the balancing parameter
.
Ensemble lasso
Lasso can be run in an
ensemble. This can be especially useful when the data is high-dimensional. The procedure involves running lasso on each of several random subsets of the data and collating the results.
Computing lasso solutions
The loss function of the lasso is not differentiable, but a wide variety of techniques from convex analysis and optimization theory have been developed to compute the solutions path of the lasso. These include coordinate descent,
[Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2010. “Regularization Paths for Generalized Linear Models via Coordinate Descent”. Journal of Statistical Software 33 (1): 1-21. https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf.] subgradient methods,
least-angle regression
In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.
Suppose we expect a response variab ...
(LARS),
and proximal gradient methods.
Subgradient
In mathematics, the subderivative (or subgradient) generalizes the derivative to convex functions which are not necessarily differentiable. The set of subderivatives at a point is called the subdifferential at that point. Subderivatives arise in c ...
methods are the natural generalization of traditional methods such as
gradient descent
Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function.
The idea is to take repeated steps in the opposite direction of the gradi ...
and
stochastic gradient descent
Stochastic gradient descent (often abbreviated SGD) is an Iterative method, iterative method for optimizing an objective function with suitable smoothness properties (e.g. Differentiable function, differentiable or Subderivative, subdifferentiable ...
to the case in which the objective function is not differentiable at all points. LARS is a method that is closely tied to lasso models, and in many cases allows them to be fit efficiently, though it may not perform well in all circumstances. LARS generates complete solution paths.
Proximal methods have become popular because of their flexibility and performance and are an area of active research. The choice of method will depend on the particular lasso variant, the data and the available resources. However, proximal methods generally perform well.
The "glmnet" package in R, where "glm" is a reference to "generalized linear models" and "net" refers to the "net" from "elastic net" provides an extremely efficient way to implement LASSO and some of its variants.
The "celer" package in Python provides a highly efficient solver for the Lasso problem, often outperforming traditional solvers like scikit-learn by up to 100 times in certain scenarios, particularly with high-dimensional datasets. This package leverages dual extrapolation techniques to achieve its performance gains.
The celer package is available a
GitHub
Choice of regularization parameter
Choosing the regularization parameter (
) is a fundamental part of lasso. A good value is essential to the performance of lasso since it controls the strength of shrinkage and variable selection, which, in moderation can improve both prediction accuracy and interpretability. However, if the regularization becomes too strong, important variables may be omitted and coefficients may be shrunk excessively, which can harm both predictive capacity and inferencing.
Cross-validation is often used to find the regularization parameter.
Information criteria such as the
Bayesian information criterion
In statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on ...
(BIC) and the
Akaike information criterion
The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to ...
(AIC) might be preferable to cross-validation, because they are faster to compute and their performance is less volatile in small samples.
An information criterion selects the estimator's regularization parameter by maximizing a model's in-sample accuracy while penalizing its effective number of parameters/degrees of freedom. Zou et al. proposed to measure the effective degrees of freedom by counting the number of parameters that deviate from zero.
The degrees of freedom approach was considered flawed by Kaufman and Rosset
and Janson et al.,
because a model's degrees of freedom might increase even when it is penalized harder by the regularization parameter. As an alternative, the relative simplicity measure defined above can be used to count the effective number of parameters.
For the lasso, this measure is given by
which monotonically increases from zero to
as the regularization parameter decreases from
to zero.
Selected applications
LASSO has been applied in economics and finance, and was found to improve prediction and to select sometimes neglected variables, for example in corporate bankruptcy prediction literature,
or high growth firms prediction.
See also
*
Least absolute deviations
Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the su ...
*
Model selection
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one.
In the context of machine learning and more generally statistical analysis, this may be the selection of ...
*
Nonparametric regression
Nonparametric regression is a form of regression analysis where the predictor does not take a predetermined form but is completely constructed using information derived from the data. That is, no parametric equation is assumed for the relationshi ...
*
Tikhonov regularization
Ridge regression (also known as Tikhonov regularization, named for Andrey Tikhonov) is a method of estimating the coefficients of multiple- regression models in scenarios where the independent variables are highly correlated. It has been used in m ...
References
{{DEFAULTSORT:lasso (statistics)
Regression analysis
Machine learning algorithms