The Large-Scale Concept Ontology for Multimedia project was a series of workshops held from April 2004 to September 2006
[Naphade, ''et al.'', "Large Scale Concept Ontology for Multimedia: VACE Workshop Report,"] for the purpose of defining a standard formal vocabulary for the annotation and retrieval of video.
Mandate
The Large-Scale Concept Ontology for Multimedia project was sponsored by the
Disruptive Technology Office and brought together representatives from a variety of research communities, such as multimedia learning, information retrieval, computational linguistics, library science, and knowledge representation, as well as "user" communities such as intelligence agencies and broadcasters, to work collaboratively towards defining a set of 1,000 concepts. Individually, each concept was to meet the following criteria:
[ Naphade, ''et al.'', "Large-Scale Concept Ontology for Multimedia," IEEE MultiMedia, vol. 13, no. 3, pp. 86-91, July-September 2006.](_blank)
/ref>
*Utility: the concepts must support realistic video retrieval problems
*Feasibility: the concepts are capable or will be capable of detection given the near-term (5 year projected) state of technology
*Observibility: the concepts occur with relatively high frequency in actual video data sets
Jointly, these concepts were to meet the additional criterion of providing broad (domain independent) coverage. High-level target areas for coverage included physical objects, including animate objects (such as people, mobs, and animals), and inanimate objects, ranging from large-scale (such as buildings and highways) to small-scale (such as telephones and appliances); actions and events; locations and settings; and graphics. The effort was led by Dr. Milind Naphade, who was the principal investigator along with researchers from Carnegie Mellon University
Carnegie Mellon University (CMU) is a private research university in Pittsburgh, Pennsylvania. One of its predecessors was established in 1900 by Andrew Carnegie as the Carnegie Technical Schools; it became the Carnegie Institute of Technology ...
, Columbia University
Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manha ...
, and IBM.
Development tracks
The project had two main "tracks": the development and deployment of keyframe annotation tools (performed by CMU and Columbia), and the development of the Large-Scale Concept Ontology for Multimedia concept hierarchy itself. The second track was executed in two phases: The first consisted in the manual construction of an 884 concept hierarchy, was performed collaboratively among the research and user community representatives.
The second track, performed by knowledge representation experts at Cycorp, Inc.
Cyc (pronounced ) is a long-term artificial intelligence project that aims to assemble a comprehensive ontology and knowledge base that spans the basic concepts and rules about how the world works. Hoping to capture common sense knowledge, Cyc fo ...
, involved the mapping of the concepts into the Cyc knowledge base and the use of the Cyc inference engine to semi-automatically refine, correct, and expand the concept hierarchy.
The mapping/expansion phase of the project was motivated by a desire to increase breadth—the mapping had the effect of moving from 884 concepts to well past the initial goal of 1000—and to move Large-Scale Concept Ontology for Multimedia from a one-dimensional hierarchy of concepts, to a full-blown ontology of rich semantic connections.
Project results
The outputs of the effort included:
#A "lite" version of the Large-Scale Concept Ontology for Multimedia concept hierarchy consisting of a subset of 449 concepts.
#A corpus of 61,901 video keyframes, taken from the 2006 TRECVID data set, annotated using Large-Scale Concept Ontology for Multimedia "lite."
#The full taxonomy of 2,638 concepts, built semi-automatically by mapping 884 concepts, manually identified by collaborators, into the Cyc knowledge base, and querying the Cyc inference engine for useful additions.
#The full ontology, in the form of a 2006 ResearchCyc release that contained the Large-Scale Concept Ontology for Multimedia mappings into the Cyc ontology.
Public detectors
Several sets of concept detectors were developed and released for public use:
VIREO-374
374 detectors developed by City University of Hong Kong
City University of Hong Kong (CityU) is a world-class public research university located in Kowloon Tong, Hong Kong. It was founded in 1984 as City Polytechnic of Hong Kong and became a fully accredited university in 1994. Currently, CityU is ...
.
Columbia374
374 detectors developed by Columbia University
Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manha ...
.
Mediamill101
101 detectors developed by The University of Amsterdam
The University of Amsterdam (abbreviated as UvA, nl, Universiteit van Amsterdam) is a public research university located in Amsterdam, Netherlands. The UvA is one of two large, publicly funded research universities in the city, the other b ...
.
Use in the larger research community
Since its release, Large-Scale Concept Ontology for Multimedia has begun to be used successfully in visual recognition research: Apart from research done by project participants, it has been used by independent research in concept extraction from images, and has served as the basis for a video annotation tool. Emilie Garanaud, Smeaton, A., and Koskela, M., "Evaluation of a Video Annotation Tool Based on the LSCOM Ontology," in ''Proceedings of the First International Conference on Semantics and Digital Media Technology'', Athens, Greece, 6-8 December 2006.
{{webarchive, url=https://web.archive.org/web/20110720215929/http://www.eurecom.fr/util/publidownload.en.htm?file=%2Fhomesdocs%2Fpublications%2Fhtdocs%2Fmm%2Farnaem-061206.pdf , date=20 July 2011
See also
*
Multimedia Web Ontology Language
Machine interpretation of documents and services in Semantic Web environment is primarily enabled by (a) the capability to mark documents, document segments and services with semantic tags and (b) the ability to establish contextual relations bet ...
(
MOWL
Machine interpretation of documents and services in Semantic Web environment is primarily enabled by (a) the capability to mark documents, document segments and services with semantic tags and (b) the ability to establish contextual relations bet ...
)
References
External links
Large-Scale Concept Ontology for Multimedia homepage
Multimedia