Kadomtsev–Petviashvili Equation
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the Kadomtsev–Petviashvili equation (often abbreviated as KP equation) is a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
to describe
nonlinear In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathe ...
wave motion In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. '' Periodic waves'' oscillate repeatedly about an equilibrium (resting) value at some freq ...
. Named after Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili, the KP equation is usually written as \displaystyle \partial_x(\partial_t u+u \partial_x u+\epsilon^2\partial_u)+\lambda\partial_u=0 where \lambda=\pm 1. The above form shows that the KP equation is a generalization to two
spatial dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
s, ''x'' and ''y'', of the one-dimensional Korteweg–de Vries (KdV) equation. To be physically meaningful, the wave propagation direction has to be not-too-far from the ''x'' direction, i.e. with only slow variations of solutions in the ''y'' direction. Like the KdV equation, the KP equation is completely integrable. It can also be solved using the
inverse scattering transform In mathematics, the inverse scattering transform is a method that solves the initial value problem for a Nonlinear system, nonlinear partial differential equation using mathematical methods related to scattering, wave scattering. The direct scatte ...
much like the
nonlinear Schrödinger equation In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonli ...
. In 2002, the regularized version of the KP equation, naturally referred to as the
Benjamin Benjamin ( ''Bīnyāmīn''; "Son of (the) right") blue letter bible: https://www.blueletterbible.org/lexicon/h3225/kjv/wlc/0-1/ H3225 - yāmîn - Strong's Hebrew Lexicon (kjv) was the younger of the two sons of Jacob and Rachel, and Jacob's twe ...
Bona
Mahony Mahony may refer to : Artists and entertainers * Bertha Mahony (1882–1969), children’s literature publisher * Dennis Mahony (1821–1879), Irish-American journalist and politician * Eoghan Mahony, American television writer and producer * Fra ...
KadomtsevPetviashvili equation (or simply the BBM-KP equation), was introduced as an alternative model for small amplitude long waves in shallow water moving mainly in the ''x'' direction in 2+1 space. :\displaystyle \partial_x(\partial_t u+u \partial_x u+\epsilon^2\partial_u)+\lambda\partial_u=0 where \lambda=\pm 1. The BBM-KP equation provides an alternative to the usual KP equation, in a similar way that the
Benjamin–Bona–Mahony equation The Benjamin–Bona–Mahony equation (BBM equation, also regularized long-wave equation; RLWE) is the partial differential equation :u_t+u_x+uu_x-u_=0.\, This equation was studied in as an improvement of the Korteweg–de Vries equation (KdV e ...
is related to the classical Korteweg–de Vries equation, as the linearized dispersion relation of the BBM-KP is a good approximation to that of the KP but does not exhibit the unwanted limiting behavior as the Fourier variable dual to ''x'' approaches \pm \infty. The BBM-KP equation can be viewed as a weak transverse perturbation of the
Benjamin–Bona–Mahony equation The Benjamin–Bona–Mahony equation (BBM equation, also regularized long-wave equation; RLWE) is the partial differential equation :u_t+u_x+uu_x-u_=0.\, This equation was studied in as an improvement of the Korteweg–de Vries equation (KdV e ...
. As a result, the solutions of their corresponding Cauchy problems share an intriguing and complex mathematical relationship. Aguilar et al. proved that the solution of the Cauchy problem for the BBM-KP model equation converges to the solution of the Cauchy problem associated to the
Benjamin–Bona–Mahony equation The Benjamin–Bona–Mahony equation (BBM equation, also regularized long-wave equation; RLWE) is the partial differential equation :u_t+u_x+uu_x-u_=0.\, This equation was studied in as an improvement of the Korteweg–de Vries equation (KdV e ...
in the L^2 -based
Sobolev space In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense ...
H^_(\R) for all k \ge 1, provided their corresponding initial data are close in H^_(\R) as the transverse variable y \rightarrow \pm \infty.


History

The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is relaxed. Still, both in the KdV and the KP equation, waves have to travel in the positive ''x''-direction.


Connections to physics

The KP equation can be used to model
water wave In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is ...
s of long
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
with weakly non-linear restoring forces and frequency dispersion. If
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
is weak compared to gravitational forces, \lambda=+1 is used; if surface tension is strong, then \lambda=-1. Because of the asymmetry in the way ''x''- and ''y''-terms enter the equation, the waves described by the KP equation behave differently in the direction of propagation (''x''-direction) and transverse (''y'') direction; oscillations in the ''y''-direction tend to be smoother (be of small-deviation). The KP equation can also be used to model waves in
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
media, as well as two-dimensional matter–wave pulses in
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
s.


Limiting behavior

For \epsilon\ll 1, typical ''x''-dependent oscillations have a wavelength of O(1/\epsilon) giving a singular limiting regime as \epsilon\rightarrow 0. The limit \epsilon\rightarrow 0 is called the
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns * Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variat ...
less limit. If we also assume that the solutions are independent of ''y'' as \epsilon\rightarrow 0, then they also satisfy the inviscid
Burgers' equation Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and ...
: :\displaystyle \partial_t u+u\partial_x u=0. Suppose the amplitude of oscillations of a solution is asymptotically small — O(\epsilon) — in the dispersionless limit. Then the amplitude satisfies a mean-field equation of Davey–Stewartson type.


See also

*
Novikov–Veselov equation In mathematics, the Novikov–Veselov equation (or Veselov–Novikov equation) is a natural (2+1)-dimensional analogue of the Korteweg–de Vries (KdV) equation. Unlike another (2+1)-dimensional analogue of KdV, the Kadomtsev–Petviashvili equati ...
*
Schottky problem In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties. Geometric formulation More precisely, one should c ...
* Dispersionless KP equation


References


Further reading

* . Translation of * * * * * *


External links

* * * {{DEFAULTSORT:Kadomtsev-Petviashvili equation Partial differential equations Exactly solvable models Integrable systems Solitons Equations of fluid dynamics